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Preface

This handout is a work, mainly intended for first year Electrical and Energy Engineering
students, but also for all first year students in technological and scientific fields, we

address the first year algebra program. The courses are presented in a very clear way
with many examples which allows the student the best understanding of the program. At

the end of each course, exercises with detailed solutions are offered.
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1. Logic, Set and Applications

1.1 Propositional logic
1.1.1 Propositions (Assertions):

- In mathematics, the propositions are denoted by P,Q,R, · · · , these are propsitions that
can be judged as true (we denote by 1 or T ) or false (we denote by 0 or F).

� Exemples 1.1 1) "All even integers are divisible by two" is a true proposition.
2) "4 is an odd number" is a false proposition.

Définition 1.1.1 0 and 1 are called truth values.

Logical connectors
∧ Conjunction P∧Q P and Q.
∨ Disjunction P∨Q P or Q.
− Negation P not P.
=⇒ Implication (Conditional) P =⇒ Q P implies Q

⇐⇒ Equivalence (Biconditional) P ⇐⇒ Q
P if and only if (iff) Q.
P is equivalent to Q.

� Exemples 1.2 P: The sine function is not one-to-one (Injective).
Q :The square root function is one-to-one correspondence (Bijective).
R :The absolute value function is not onto (Surjective).
The following symbols represent the indicated propositions:
R: The absolute value function is onto.
P∨Q: The sine function is one-to-one, or the square root function is not one-to-one

correspondence.
Q =⇒ R: If the square root function is one-to-one, then the absolute function is not

onto.
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R ⇐⇒ P: The absolute value function is not onto if and only if the sine function is
not one-to-one.

P∧Q: The sine function is not one-to-one, and the square root function is one-to-one
correspondence.

Valuations and Truth Tables
Propositions have truth values, but propositional forms do not. This is because every
propositional form represents any one of infinitely many propositions. However, once a
propositional form is identified with a proposition, there should be a process by which the
truth value of the proposition is associated with the propositional form. This is done with
a rule v called a valuation. The input of v is a propositional form, and its output is T or F .

Suppose that P is a propositional variable. If P has been assigned a proposition,

v(P) =
{

1 if P is true
0 if P is false .

For example, if P := 2+3 = 5, then v(P) = 1, and if P := 2+3 = 7, then v(P) = 0.
Définition 1.1.2 Let P and Q be propositional forms.
The truth value of the negation of a proposition is the opposite of the truth value of that
proposition,

v(P) =
{

0 if P is true (or if v(P) = 1)
1 if P is false (or if v(P) = 0) .

The conjunction is true when both of its conjuncts are true, and false otherwise.

v(P∧Q) =

{
1 if v(P) = 1 and v(Q) = 1
0 if not (otherwise). .

The disjunction is true when at least one disjunct is true, and false otherwise.

v(P∨Q) =

{
0 if v(P) = 0 and v(Q) = 0
1 if not (otherwise). .

The implication (P =⇒ Q), (it reads also "if P then Q") is false only if P is true and Q is
false, otherwise it is true

v(P =⇒ Q) =

{
0 if v(P) = 1 and v(Q) = 0
1 if not (otherwise). .

The equivalence is true if P and Q have the same truth values

v(P ⇐⇒ Q)) =

{
1 if v(P) = v(Q)
0 if not (otherwise). .

- The following truth table summarizes the above definition

P 1 1 0 0
Q 1 0 1 0
P 0 0 1 1

P∧Q 1 0 0 0
P∨Q 1 1 1 0

P =⇒ Q 1 0 1 1
P ⇐⇒ Q 1 0 0 1

.
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R

Two rows


P
1
0

−→ Four rows


P Q
1 1
1 0
0 1
0 0

−→ Eight rows



P Q R
1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

. .....

Properties:
Let P,Q and R be three propositions. Using truth tables, we can proof that the following
propositions are true:

1 [P ⇐⇒ Q]⇐⇒
[
P ⇐⇒ Q

]
2 P ⇐⇒ Q ⇐⇒ (P =⇒ Q)∧ (Q =⇒ P) .
3 [(P =⇒ Q)∧ (Q =⇒ R)] =⇒ [P =⇒ R] .
Distributive Laws
4 P∧ (Q∨R)⇐⇒ (P∧Q)∨ (P∧R) .(the distribution of ∧ on ∨),
5 P∨ (Q∧R)⇐⇒ (P∨Q)∧ (P∨R) .(the distribution of ∨ on ∧),
De Morgan’s Laws
6 P∧Q ⇐⇒ P∨Q.
8 P∨Q ⇐⇒ P∧Q.
9
[
P =⇒ Q

]
⇐⇒

[
P∧Q

]
.

Contrapositive Law
10 P =⇒ Q ⇐⇒ Q =⇒ P.

Proof:
• Truth table associated of De Morgan’s Laws

P Q P∧Q P∧Q P Q P∨Q
1 1 1 0 0 0 0
1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 0 1 1 1 1

We see that the logical propositions (P∧Q) and (P∨Q) have the same truth values,
so they are equivalent. In the same way, we prove the other properties.

• Truth table associated of (9)

P 1 1 0 0
Q 1 0 1 0

P =⇒ Q 1 0 1 1
P =⇒ Q 0 1 0 0

Q 0 1 0 1
P∧Q 0 1 0 0
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We see that the logical propositions (P =⇒ Q) and (P∧Q) have the same truth values,
so they are equivalent

• Truth table associated of (3)

P 1 1 1 1 0 0 0 0
Q 1 1 0 0 1 0 1 0
R 1 0 1 0 1 1 0 0

P =⇒ Q 1 1 1 1 0 1 0 1
Q =⇒ R 1 1 0 1 1 0 1 1
P =⇒ R 1 1 1 1 0 0 1 1

P =⇒ Q∧Q =⇒ R 1 1 0 1 0 0 0 1
[P =⇒ Q∧Q =⇒ R] =⇒ [P =⇒ R] 1 1 1 1 1 1 1 1

We see that the logical propositions [P =⇒ Q∧Q =⇒ R] =⇒ [P =⇒ R] always true.
In the same way, we prove the other properties.

1.1.2 Quantifiers
In mathematics, there exists three logical quantifiers represented in the Table

Quantifiers Proposition Description

∀ : The universal quantifier " for all" ∀x ∈ E : P(x)
is true if P(x) is true

for all values of x in E
∃ : The existential quantifier

"there exists" or "there exists at least one" ∃x ∈ E : P(x)
is true if P(x) is true
for at least one value of x in E

∃! : There exists a unique ∃! ∈ E : P(x)

is true if there exists an x
which is unique satisfying P(x)

It is false if this x does not exist or
if there exist several x satisfyingP(x)

� Exemples 1.3 :
1. The quantified assertion « ∀n ∈ N : (4− n)n < 0 » is false since there exists an

element n in N (We take n = 0,n = 1,n = 2, or n = 3)« (4−n)n < 0 ».
2. The quantified assertion « ∃x ∈ R : x4 = 81 » is true because there exists at least

one element in R which satisfies x4 = 81. This is the case for the two real numbers -3 and
3..

- Following the expression “Who can do more, can do less”, it is clear that the quantified
assertion “∃x ∈E : P(x) ” is automatically verified when the quantified assertion “∀x ∈E :
P(x) » is. For example, the quantified assertion

« ∃x ∈ [−3,3] : x2 − 9 ≤ 0 » is true since the quantified assertion « ∀x ∈ [−3,3] :
x2 −9 ≤ 0 » is true.

Negation of a quantified proposition
1. ∀x ∈ E : P(x)⇐⇒∃x ∈ E : P(x)
2. ∃x ∈ E : P(x)⇐⇒∀x ∈ E : P(x)
3. ∃!x ∈ E : P(x)⇐⇒∃x ∈ E : P(x)∧ x is unique ⇐⇒∃x ∈ E : P(x)∨ x is unique
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Important rules
1. ∀x ∈ E,∀y ∈ F : P(x,y)⇐⇒∀y ∈ F,∀x ∈ E : P(x,y)
2. ∃x ∈ E,∃y ∈ F : P(x,y)⇐⇒∃y ∈ F,∃x ∈ E : P(x,y)
3. ∀x ∈ E,∃y ∈ F : P(x,y)< ∃y ∈ F,∀x ∈ E : P(x,y)

� Exemples 1.4 : Let U and V be two sequences
1. ∀n ∈ N : Un =Vn. The negation of this proposition is ∃n ∈ N : Un ̸=Vn.
2. ∃!n ∈ N : Un =V0. The negation of this proposition is

∀n ∈ N : Un ̸=V0 or ∃(n1,n2) ∈ N2 : Un1 =V0 ∧Un2 =V0
3. ∀n ∈ N,∃m ∈ N : Un ≤ Vm. The negation of this proposition is: ∃n ∈ N,∀m ∈ N :

Un >Vm

1.1.3 Types of reasoning in mathematics
Proof by Contrapositive
Since, for two propositions P and Q, we have

[P =⇒ Q]⇐⇒
[
Q =⇒ P

]
So, for show that P =⇒ Q, It is enough to show that Q =⇒ P.

� Exemples 1.5 : By using the proof by contrapositive, we prove the following proposi-
tion:

∀n ∈ N : n2 is even number =⇒ n is even number.

For that, proof that

∀n ∈ N : n is even number =⇒ n2 is even number,

In other words

n is odd number =⇒ n2 is odd number .

Let n ∈ N. Suppose n is odd number. This means that ∃p ∈ N such that n = 2p+ 1.
Then we have:

n2 = (2p+1)2 = 2(2p2 +2p)+1 = 2q+1,q ∈ N.

So n2 is odd number. Then prove the proposition.

Proof by the absurd
For prove that a proposition P is true, we assume that P is true and we deduce a contra-
diction.

� Exemples 1.6 :
1. Let n ∈ N∗, proof that n2 +1 cannot be a square of p ∈ N.

By using the proof by the absurd, we assume that ∃p ∈ N such that n2 + 1 = p2.
Which implies
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p2 −n2 = 1 ⇐⇒ (p−n)(p+n) = 1,

As n ∈ N∗, then we must take p > 1 so that p−n is strictly positive (> 0). So
n ≥ 1
and

p−n ≥ 1
=⇒ p+n = p−n+2n ≥ 1+2 = 3,

then

(p−n)(p+n)≥ 1×3 > 1,

hence the contradiction.

Direct Proof:

To prove that P =⇒ Q is true, we assume that P is true and show that Q is true.

� Exemples 1.7 :
Proof that if ∀a,b ∈Q, then a+b ∈Q. Indeed, let a,b ∈Q, so :

{
a = x

y ,x ∈ Z,y ∈ N∗

b = s
t ,s ∈ Z, t ∈ N∗ =⇒ a+b =

xt + ys
yt

∈Q.

Hence the result.

1.2 Set Language
1.2.1 concepts

A set E is a collection of objects called elements.
We call CardE the number of elements of the set E.
We write x ∈ E to say that: x is an element of E (or that x belongs to E).
We write x /∈ E to say that: x does not belong to E
We write F ⊂ E to say that: F is a subset of E, or F is a part of E or F is included in

E.
We note by ∅ the empty set which does not contain any element.

� Exemples 1.8 E=
{

1, t,5,m,
√

7
}
,

CardE= 5, m ∈ E, {1,5} ⊂ E, s /∈ E, {0, t}* E.

1.2.2 Operations on sets

Let E and F be two sets, then we present the possible operations between E and F.
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E⊂ F E is included in F E⊂ F⇐⇒∀x : x ∈ E=⇒ x ∈ F
E= F E and F are two equal sets E= F⇐⇒ (E⊂ F)∧ (F⊂ E)

E∪F The union of E and F
x ∈ (E∪F)⇔ (x ∈ E)∨ (x ∈ F) ,

The set that contains
all the elements of E and F

E∩F The intersection of E and F
x ∈ (E∩F)⇔ (x ∈ E)∧ (x ∈ F) ,

the set of elements
which are both in E and in F

E\F= E−F
(E minus F) The difference between E and F

x ∈ (E−F)⇔ (x ∈ E)∧ (x /∈ F) ,
the set of elements

of E which are not in F
A ⊂ E,

Ac =CA
E = A

The complement of A in E Ac = E\A = {x : x ∈ E∧ x /∈ A}

E△F The symmetrical difference
between E and F E△F= (E\F)∪ (F\E) = (E∪F)− (F∩E) .

Properties:
Let A,B and C be parts of a set E, then:

• ∅∪A = A.
• ∅∩A =∅.
• E∩A = A.
• A∪E= E.
• A ⊂ B =⇒ A∩B = A, and A∪B = B.
• A∩ (B∪C) = (A∩B)∪ (A∩C) , (The distribution of ∩ on ∪).
• A∪ (B∩C) = (A∪B)∩ (A∪C) , (the distribution of ∪ on ∩).
• (A∪B)c = Ac ∩Bc.
• (A∩B)c = Ac ∪Bc.
• Ac ∩A =∅, and Ac ∪A = E.
• ∅⊂ A,∀A ⊂ E.

Set of parts:
E is a set, we denote P(E) the set which contains all the parts of E and we call it set of
parts of E.

P(E) = {A,A ⊂ E} .

If CardE= n, then CardP(E) = 2n.

Cartesian product
Let E and F be two sets, the cartesian product, denoted E×F, is the set of pairs (x,y)
where x ∈ E and y ∈ F, that is to say:

E×F= {(x,y) ,x ∈ E,y ∈ F} .

Examples: Let A = {1,2,3,4} and B = {4,5} , then
A∩B = {4} , A∪B = {1,2,3,4,5} , A\B = A−B = {1,2} , CA

B = {5}
A×B = {(1,4) ,(1,5) ,(2,4) ,(2,5) ,(3,4) ,(3,5) ,(4,4) ,(4,5)} .
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1.3 Applications
1.3.1 Concepts

1- An application (map) f : E→ F is a relation between a set E and a set F for which
each element x ∈ E has a unique image f (x) ∈ F. That is to say:

∀x ∈ E,∃!y ∈ F : y = f (x).

• E is called the starting set of the map.
• F is called the arrival set of the map.
• (x, f (x)) ∈ Γ, Γ is called the graph of the map.
• y is called image of x by the map.
• x is an antecedent of y by the map.

E F

x

x

x
x

x x
x

x
x

x

x

Figure 1.1: Application

• Notation:

f : E −→ F
x 7−→ y = f (x)

2- Equality: Let f : E → F and g : E → F, we say that these two applications are
equal if and only if (iff)

∀x ∈ E, : g(x) = f (x).

3- Composition of applications: Let f : E→ F and g : F→G, then

x ∈ E f (x) ∈ F g[ f (x)] ∈G
f g

g◦ f
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4- Restriction, Extension: Let f : A → F and g : B → F. if A ⊂ B and if, for all x ∈ A, we
have f (x) = g(x), we say that f is a restriction of g, or that g is an extension of f .

Examples:
1) Identity on a set E is an application defined as follows:

IdE : E −→ E
x 7−→ IdE(x) = x

2)

f : R∗
+ −→ R∗

+

x 7−→ f (x) = 1
x

and
g : R∗

+ −→ R
x 7−→ g(x) = x−1

x+1
,

then
go f : R∗

+ −→ R
x 7−→ go f (x) = g( f (x)) = 1−x

1+x

1.3.2 Injections, surjections, bijections
Injective Application (one-to-one)
An application (map) f :E→ F is injective if and anly if (1 or 2):

1.

∀x,x′ ∈ E : x ̸= x′ =⇒ f (x) ̸= f (x′)

2.

∀x,x′ ∈ E : f (x) = f (x′) =⇒ x = x′

O

Figure 1.2: Injective

� Exemples 1.9 :
• IdE is injective.
• The map f : R+ −→ R and f (x) = x2 is injective.
• x 7−→ sinx is not injective on R because π

2 ̸= 5π
2 but sin π

2 = sin 5π
2 = 1

• x 7−→ x2 is not injective on R because (1)2 = (−1)2 but −1 = 1.
• f : ]−1,+∞[−→ ]−1,+∞[ and f (x) = 1

x+1 .
Let x,x′ ∈ ]−1,+∞[ , we have

f (x) = f (x′)⇐⇒ 1
x+1

=
1

x′+1
⇐⇒ x+1 = x′+1 ⇐⇒ x = x′

then f is injective.
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Surjective Application (onto)

A map f :E→ F is surjective if every element y of F is the image of at least one element
x of E, i.e.:

∀y ∈ F, ∃x ∈ E: y = f (x)

In other words, f (E) = F.

Figure 1.3: Surjective

� Exemples 1.10 :
• IdE is surjective.
• The map f : R−→ R+ and f (x) = x2 is surjective.
• x 7−→ cosx is not surjective on R because 2 It has no antecedent
• f : ]−1,+∞[−→ R∗ and f (x) = 1

x+1
let y ∈ R∗ :

y = f (x)⇐⇒ y =
1

x+1
⇐⇒ x =

(
1
y
−1
)

then ∀y ∈ R∗, ∃x =
(

1
y −1

)
∈ ]−1,+∞[: y = f (x)

Then f is surjective.

Bijective Application (one-to-one correspondence)

The application f is a bijective, if and only if, it is both injective and surjective, i.e:

∀y ∈ F, ∃!x ∈ E : y = f (x).

Existence: comes from surjectivity,
Uniqueness: comes from injectivity.
If f is not injective or is not surjective then it is not bijective.
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Figure 1.4: Bejection

� Exemples 1.11 :
• 1) IdE is bijective.
• The application f : R+ −→ R+ and f (x) = x2 is bijective.
• f : R−→ ]0,+∞[ and f (x) = ex

Let x,x′ ∈ R, we have

f (x) = f (x′)⇐⇒ ex = ex′ ⇐⇒ x = x′

Then f is injective, and let y ∈ ]0,+∞[ :

y = f (x)⇐⇒ y = ex ⇐⇒ x = lny

Then f is surjective, so it is bijective.

Corollary 1.3.1 Let E and F two sets and f : E→ F the application, then
f is bijective ⇐⇒ there exists a unique application which we note f−1 : F→ E such

that

f ◦ f−1 = IdF, and f−1 ◦ f = IdE
x = f−1(y)⇐⇒ y = f (x),

Let f the application from E to F, and g the application from F to G. We have the
following implications.

– If f and g are injectives, then g◦ f is injective.
– If g◦ f is injective, then f is injective.
– If f and g are surjectives, then g◦ f is surjective.
– If g◦ f is surjective, then g is surjective.
– If f and g are bijectives, then g◦ f is bijective, and (g◦ f )−1 = f−1 ◦g−1.

1.3.3 Image and inverse image
Let A ⊂ E and M ⊂ F.
1. We call image of A by f , the set of images of the elements of A noted:
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f (A) = { f (x),x ∈ A} ⊂ F

f (A) is a part of F,
2. We call inverse image of M by f , the set of antecedents of the elements of M, denoted

f−1(M) = {x ∈ E, f (x) ∈ M} ⊂ E

f−1(B) is a part of E,
Formally we have:

∀y ∈ F,(y ∈ f (A)⇐⇒∃x ∈ A,y = f (x))

∀x ∈ E,
(
x ∈ f−1(M)⇐⇒ f (x) ∈ M

)
.

� Exemples 1.12 :
f : R−→ R and f (x) = x2

1. f ([0,3]) = { f (x),x ∈ [0,3]}=
{

x2,x ∈ [0,3]
}

(x ∈ [0,3]) ⇐⇒ 0 ≤ x ≤ 3
⇐⇒ 0 ≤ x ≤ 3
⇐⇒ 0 ≤ x2 ≤ 9 ( f is increasing)
=⇒ f ([0,3]) = [0,9]

2. f ([0,3]) = { f (x),x ∈ [−3,3]}=
{

x2,x ∈ [−3,3]
}

(x ∈ [−3,3]) ⇐⇒ x ∈ [−3,0]∪ [0,3]
⇐⇒ (−3 ≤ x ≤ 0)∨ (0 ≤ x ≤ 3)
⇐⇒

(
0 ≤ x2 ≤ 9

)
∨
(
0 ≤ x2 ≤ 9

)
.

=⇒ f ([−3,3]) = [0,9]

3. f−1 ([1,4]) = {x, f (x) ∈ [1,4]}=
{

x,x2 ∈ [1,4]
}

(
x2 ∈ [1,4]

)
⇐⇒ (1 ≤ x ≤ 2)∨ (−2 ≤ x ≤−1)
⇐⇒ x ∈ [−2,−1]∪ [1,2]
=⇒ f−1 ([1,4]) = [−2,−1]∪ [1,2]

Proposition 1.3.2 Let f : E−→ F, A,B ⊂ E and M,N ⊂ F, then
1 A ⊂ B =⇒ f (A)⊂ f (B).
2 N ⊂ M =⇒ f−1 (N)⊂ f−1 (M) .
3 f (A∪B) = f (A)∪ f (B).
4 f (A∩B)⊂ f (A)∩ f (B).
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5 f−1(M∪N) = f−1(M)∪ f−1(N).
6 f−1(M∩N) = f−1(M)∩ f−1(N).

7 f−1 (CM
F
)
=C f−1(M)

E .

Prove:
3. Let y ∈ F, then

[y ∈ f (A∪B)] ⇐⇒ ∃x ∈ A∪B;y = f (x)
⇐⇒ ∃x [((x ∈ A)∨ (x ∈ B))∧ (y = f (x))]
⇐⇒ ∃x [((x ∈ A)∧ (y = f (x))∨ ((x ∈ B)∧ (y = f (x))]
⇐⇒ [∃x((x ∈ A)∧ (y = f (x))]∨ [∃x((x ∈ B)∧ (y = f (x))]
⇐⇒ (y ∈ f (A))∨ (y ∈ f (B))
⇐⇒ y ∈ f (A)∪ f (B)

which shows that f (A∪B) = f (A)∪ f (B).
4. Let y ∈ F, then

[y ∈ f (A∩B)] ⇐⇒ ∃x ∈ A∩B;y = f (x)
⇐⇒ ∃x [((x ∈ A)∧ (x ∈ B))∧ y = f (x)]
⇐⇒ ∃x [((x ∈ A)∧ (y = f (x))∧ ((x ∈ B)∧ (y = f (x))]
=⇒ [∃x((x ∈ A)∧ (y = f (x))]∧ [∃x((x ∈ B)∧ (y = f (x))]
=⇒ (y ∈ f (A))∧ (y ∈ f (B))
=⇒ y ∈ f (A)∪ f (B)

which shows that f (A∩B)⊂ f (A)∩ f (B).
5. Let x ∈ E, then

[
x ∈ f−1(N ∪M)

]
⇐⇒ f (x) ∈ N ∪M
⇐⇒ ( f (x) ∈ N)∨ ( f (x) ∈ M)

⇐⇒
(
x ∈ f−1 (M)

)
∨
(
x ∈ f−1 (N)

)
⇐⇒

(
x ∈ f−1 (M)

)
∨
(
x ∈ f−1 (N)

)
⇐⇒ x ∈ f−1 (M)∪ f−1 (N)

which shows that f−1 (M∪N) = f−1 (M)∪ f−1 (N).
6. Let x ∈ E, then

[
x ∈ f−1(N ∩M)

]
⇐⇒ f (x) ∈ N ∩M
⇐⇒ ( f (x) ∈ N)∧ ( f (x) ∈ M)

⇐⇒
(
x ∈ f−1 (M)

)
∧
(
x ∈ f−1 (N)

)
⇐⇒

(
x ∈ f−1 (M)

)
∧
(
x ∈ f−1 (N)

)
⇐⇒ x ∈ f−1 (M)∩ f−1 (N)
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which shows that f−1 (M∩N) = f−1 (M)∩ f−1 (N).
7. Let x ∈ E, then

x ∈ f−1(CM
F )⇐⇒ f (x) ∈CM

F
⇐⇒ ( f (x) ∈ F)∧ ( f (x) /∈ M)

⇐⇒ (x ∈ E)∧
(
x /∈ f−1 (M)

)
⇐⇒ x ∈C f−1(M)

E

which shows that f−1 (CM
F
)
=C f−1(M)

E .

Remark: The sets C f (A)
F and f

(
CA
E
)

are not always comparable.

1.3.4 Exercises

Exercise 1.3.1: Let P,Q and R be three logical propositions.
1. Prove that P∧Q ⇐⇒ P∨Q
2. Prove that [(P =⇒ Q)]⇐⇒

(
P∨Q

)
. Conclude P =⇒ Q.

3. Prove that [(P =⇒ Q)∧ (Q =⇒ R)] =⇒ (P =⇒ R) .

Solution:
1. Prove that P∧Q ⇐⇒ P∨Q : By using the truth table

P Q P∧Q P∧Q P Q P∨Q
1 1 1 0 0 0 0
1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 0 1 1 1 1

We see that the logical propositions (P∧Q) and (P ∨ Q) have the same truth
values, so they are equivalent.

2. a) Prove that (P =⇒ Q)⇐⇒
(
P∨Q

)
: Using the truth table

P Q P P ⇒ Q P∨Q
1 1 0 1 1
1 0 0 0 0
0 1 1 1 1
0 0 1 1 1

We see that the logical propositions (P ⇒ Q) and (P∨Q) have the same truth
values, so they are equivalent.
b) Conclusion of P =⇒ Q : Using negation to equivalent the previous, we find

(P =⇒ Q)⇐⇒
(
P∨Q

)
⇐⇒ P∧Q.
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3. Prove that [(P =⇒ Q)∧ (Q =⇒ R)] =⇒ (P =⇒ R) : Using the truth table

P Q R P =⇒ Q Q =⇒ R (P =⇒ Q)∧ (Q =⇒ R) P =⇒ R .⇒ .
1 1 1 1 1 1 1 1
1 1 0 1 0 0 0 1
1 0 1 0 1 0 1 1
1 0 0 0 1 0 0 1
0 1 1 1 1 1 1 1
0 1 0 1 0 0 1 1
0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1

We see that the logical propositions ((P =⇒ Q)∧ (Q =⇒ R)) and (P =⇒ R) have
the same truth values, so they are equivalent.

Exercise 1.3.2: I) Are the following propositions true or false? and give their
negation.

1. ∀x ∈ R,∀y ∈ R : x2 = y2 =⇒ x = y.
2. ∀x ∈ N,∀y ∈ N : x2 = y2 =⇒ x = y.
3. ∃x ∈ R,∃y ∈ R : x = ey.
4. ∀x ∈ R,∃y ∈ R : x = ey.
5. ∃x ∈ R,∀y ∈ R : x = ey.
6. ∀x ∈ R,∀y ∈ R : x = ey.

II) Let f be a function of f : I → R: By using logical quantifiers, express the
following propositions:

1. f is a bounded.
2. f is a continuous on I.

Solution:
Ia) True or false? and give their negation.

1. Is false ( (−x)2 = x2 ; x =−x,∀x ∈ R)
2. Is true ( x ≥ 0, and y ≥ 0)
3. Is true ( Easily, ∃x = 1,∃y = 0 : 1 = e0).
4. Is false ( if x ≤ 0, there is no y )
5. Is false ( for example, ∃x = 1, and y = 2 : 1 ̸= e2).
6. Is false ( Exponential function is always positive )
Ib) Negation the previous propositions

1. ∃x ∈ R,∃y ∈ R : x2 = y2 ∧ x ̸= y.
2. ∃x ∈ N,∃y ∈ N : x2 = y2 ∧ x ̸= y.
3. ∀x ∈ R,∀y ∈ R : x ̸= ey.
4. ∃x ∈ R,∃y ∈ R : x ̸= ey.
5. ∀x ∈ R,∃y ∈ R : x ̸= ey.
6. ∃x ∈ R,∃y ∈ R : x ̸= ey.
II) Let f be a function of f : I → R: Using logical quantifiers:

1. f is a bounded ⇔ (∃m,M ∈ R,∀x ∈ I : m ≤ f (x)≤ M) .
2. f is a continuous on I ⇔ (∀ε > 0,∀x,a ∈ I,∃δ > 0 : |x−a|< δ ⇒ | f (x)− f (a)|< ε) .
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Exercise 1.3.3: I) By contrapositive proof, show that:

(x ̸= 2)∧ (y ̸= 2) =⇒ xy−2x−2y+4 ̸= 0.

II) Let x,y ∈Q. Prove the following equivalence:

x+ y.
√

3 = 1 ⇐⇒ (x = 1 and y = 0).

Solution:
I) By contrapositive proof, show that

(x ̸= 2)∧ (y ̸= 2) =⇒ xy−2x−2y+4 ̸= 0.

that’s to say

xy−2x−2y+4 = 0 =⇒ (x = 2)∨ (y = 2).

We have

xy−2x−2y+4 = (x−2)× (y−2)

then

xy−2x−2y+4 = (x−2)× (y = 2) = 0 =⇒ (x = 2)∨ (y = 2).

So

(x ̸= 2)∧ (y ̸= 2) =⇒ xy−2x−2y+4 ̸= 0.

II) Let x,y ∈Q. Prove the following equivalence:

x+ y.
√

3 = 1 ⇐⇒ (x = 1 and y = 0).

1. (⇒) :Using absurd proof: suppose that x+y.
√

3 = 1 and x ̸= 1∨y ̸= 0, so we get√
3 = 1−x

y ∈Q, this is contraduction. Then

x+ y.
√

3 = 1 ⇒ (x = 1 and y = 0).

2. (⇐) : (x = 1 and y = 0)⇒ x+ y.
√

3 = 1+0
√

3 = 1 (this is easy).

(x = 1 and y = 0)⇒ x+ y.
√

3 = 1.
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Exercise 1.3.4:
1. Let F = {{1,2} ,{3,4,5} ,{6,7,8}} , Which of the following propositions

are true:
a) {1,2} ⊂ F ; b) 7 ∈ F ; c) {6,7,8} ∈ F ; d) {{3,4,5}} ⊂ F ; e) ∅ ∈ F ; f)
∅⊂ F.

2. Let A; ,B be two parts of a set E. Show that:
a) (A∪B)c = Ac ∩Bc.
b) A\(A\B) = A∩B.

Solution:
1. F = {{1,2} ,{3,4,5} ,{6,7,8}} .

• {1,2} ⊂ F is false, because {1,2} is not a part of F.
• 7 ∈ F, is false, because 7 is not an element of F.
• {6,7,8} ∈ F, is true, because {6,7,8} is an element of F.
• {{3,4,5}} ⊂ F, is true, because {6,7,8} is a part of F.
• ∅ ∈ F, is false, because ∅ is not an element of F.
• ∅⊂ F, is true, because ∅ is a part of F.

2. Let A; ,B be two parts of a set E.
a) Show that: (A∪B)c = Ac ∩Bc. Let x ∈ (A∪B)c , then

[x ∈ (A∪B)c] ⇔ x /∈ (A∪B)
⇔ x /∈ A∧ x /∈ B
⇔ x ∈ Ac ∧ x ∈ Bc

⇔ x ∈ Ac ∩Bc.
b) Show that: A\(A\B) = A∩B. Let x ∈ A\(A\B) , then

[x ∈ A\(A\B)] ⇔ (x ∈ A)∧ (x /∈ (A\B))
⇔ (x ∈ A)∧ (x ∈ (A\B))
⇔ (x ∈ A)∧ (x ∈ A)∧ (x /∈ B)
⇔ (x ∈ A)∧ [(x /∈ A)∨ (x ∈ B)]
⇔ [(x ∈ A)∧ (x /∈ A)]∨ [(x ∈ A)∧ (x ∈ B)]
⇔ [x ∈∅]∨ [x ∈ A∩B]
⇔ x ∈∅∪ (A∩B)
⇔ x ∈ (A∩B) .
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Exercise 1.3.5: I) Let A,B two sets

A =
{
(x,y) ∈ R2 : 4x− y = 1

}
,

and

B = {(t +1,4t +3) , t ∈ R} .

Prove that A = B.
II) Let A,B and C three sets given, show that

B ⊂ A ⊂C ⇐⇒ A∪B = A∩C.

Solution:
I) Prove that A = B.

1. A ⊂ B : Let (x,y) ∈ A, with 4x− y = 1, then (x,y) = (x,4x−1) . Replacing X by
t +1 we find

(x,y) = (x,4x−1) = (t +1,4t +3) ∈ B.

2. B ⊂ A : Let (x,y) ∈ B, then there exists t ∈ R such that x = t +1 and y = 4t +3.
So

4x− y = 4(t +1)− (4t +3) = 1 ⇒ (x,y) ∈ A.

II) Let A,B and C three sets given, show that

B ⊂ A ⊂C ⇐⇒ A∪B = A∩C.

1. (⇒) : We have
B ⊂ A ⇒ A∪B = A

and
A ⊂ C ⇐⇒ A = A∩C,

then

A∪B = A∩C.

2. (⇐=) : We have
A ⊂ A∪B ⇒ A ⊂ A∩C ⇒ A ⊂C

and
B ⊂ A∪B ⇒ B ⊂ A∩C ⇒ B ⊂ A∧B ⊂C

then

B ⊂ A ⊂C.
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Exercise 1.3.6: Let the map(application) f : R→ R be defined by:

f (x) =
{ 1

2 i f x ≤ 0
x+ 1

2 i f x > 0

1. Draw the graph of f .
2. Determine f ([−1,1]); f−1({0}); f−1(

{1
2

}
); f−1(]−∞,1[).

3. The map f is it injective (one-to-one) ? is it surjective (onto)?, is it bijective
(one-to-one correspondence)?

4. Find the interval for which the map f is bijective, then determine the recip-
rocal map f−1 in this interval.

Solution:
1. Determine

• f ([−1,1]) = f ([−1,0])∪ f (]0,1]) =
{1

2

}
∪
]1

2 ,
3
2

]
=
[1

2 ,
3
2

]
.

• f−1({0}) = {x : f (x) = 0}=∅.
• f−1(

{1
2

}
=
{

x : f (x) = 1
2

}
= ]−∞,0] .

• f−1(]−∞,1[) = {x : f (x)< 1}=
]
−∞, 1

2

[
.

2. Injectivity, surjectivity and bijectivity.
• The map f is not injective because f (−3) = f (−2), but −2 ̸= −3. or

f (]−∞,0]) =
{1

2

}
.

• The map f is not surjective because f (x) = 0, does not accept solutions.
• Finally f is not bijective.

3. Find the interval for which the map f is bijective.
i) f it is injective if and anly if x ∈ [0,+∞[ .
2i) f it is surjective if and anly if y ∈

[1
2 ,+∞

[
.

3i) Then f is bijective if and anly if x ∈ [0,+∞[ and f (x) ∈
[1

2 ,+∞
[
.

4. Determine the reciprocal map f−1 in this interval.

f−1 :
[1

2 ,+∞
[

−→ [0,+∞[
y 7−→ x = f−1(y)

then

x = f−1(y)⇔ y = f (x) = x+
1
2
⇔ x = y− 1

2
.

So

f−1(y) = y− 1
2
.
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Exercise 1.3.7: Let the following two maps f :R2 →R and g :R→R2 be defined
by:

f (x,y) = xy, and g(x) =
(
x2,x

)
.

1. Study the injectivity, surjectivity and bijectivity of f and g.
2. Find f ◦g and g◦ f .

Solution:
1. Study the injectivity, surjectivity and bijectivity of f and g.

• Injectivity of f : We have f (2,5) = f (5,2) = 10, but (2,5) ̸= (5,2), then f
is not injective.

• Surjectivity of f : We have ∀z ∈ R,∃(x,y) ∈ R2 : z = xy, take, for example
x = 1,y = z. Then f is surjective.
Finally f is not bijective.

• Surjectivity of g: The equation (x2,x) = (1,3) (For example), does not
accept solutions in R then g is not surjective.

• Injectivity of g: Let a,b ∈ R then
[g(a) = g(b)] ⇒

(
a2,a

)
=
(
b2,b

)
⇒ (a = b)∧

(
a2 = b2)

⇒ (a = b)∧ (a = b∨a =−b)
⇒ [(a = b)∧ (a = b)]∨ [(a = b)∧ (a =−b)]
⇒ a = b.

Then g is injective.
Finally g is not bijective.

2. Find f ◦g and g◦ f .
i) g◦ f :

g◦ f
̂

R2 f−→ R g−→ R

and ∀(x,y) ∈ R2,g◦ f (x,y) = g [ f (x,y)] = g(xy) =
(
x2y2,xy

)
.

ii) f ◦g :

f◦g
̂

R g−→ R2 f−→ R

and ∀x ∈ R, f ◦g(x) = f [g(x)] = f (x2,x) = x3.

1.3.5 Additional exercises

Exercise 1.3.8: Let A; ,B,C be three parts of a set E. Prove that:
a) P(A∩B) = P(A)∩P(B) .
b) (A∪B)×C = (A×C)∪ (B×C) .
c) B ⊂ A ⊂C ⇐⇒ A∪B = A∩C.
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Exercise 1.3.9: Let the map (application) f : R2 → R2 be defined by

f (x,y) = (x+ y,xy)

1. Show that f (x,y) = f (y,x).
2. Find the inverse image (preimage) of the set {(0,1)}.
3. f is it injective (one-to-one) ?, surjective (onto)?

Exercise 1.3.10: PARTIE I: Let the function f be defined from R to R by:

∀x ∈ R, f (x) =
x−1
x2 +1

.

1. Prove that f (a) = f
(a+1

a−1

)
for all a ̸= 1.

2. f is it injective? is it bijective (one-to-one correspondence)? Justify?

PARTIE II: Let h be the restriction of f on the interval I =
]
−∞,

(
1−

√
2
)]

.

Exercise 1.3.11:
1. Prove that the equation h(x) = m doesn’t admit solutions if m ∈R\J, where

the interval J =

[
−1

2(
√

2−1)
,0
[
.

2. Prove that h is a bijection from I to the interval J.





2. Algebraic Structure

2.0.1 Internal composition law (I.C.L)
We say that the composition law ⋆ is an internal composition law (I.C.L) of a set E if and
only if

∀(x,y) ∈ E×E : (x⋆ y) ∈ E.

� Exemples 2.1 :
1.The law ∩ is an internal composition law of the set P(E) (set of parts of E), because

∀(A,B) ∈ P(E)×P(E) : A∩B ∈ P(E).

2. We define on N the law ⋆ by n⋆m = n+ em, then ⋆ is not a law of internal compo-
sition because em /∈ N.

Definitions
Let ⋆ and ᵀ be two internal composition laws of E, then:

• The law ⋆ is associative if:

∀(x,y,z) ∈ E×E×E, (x⋆ y)⋆ z = x⋆ (y⋆ z).

• The law ⋆ is commutative if:

∀(x,y) ∈ E×E, x⋆ y = y⋆ x.

• We say that e is a neutral (an identity) element of the law ⋆ if:

∃e ∈ E, ∀x ∈ E, x⋆ e = e⋆ x = x.
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• An element x is invertible in E, if there exists x′ ∈ E (called the inverse of x) such
that:

∀x ∈ E, ∃x′ ∈ E : x′ ⋆ x = x⋆ x′ = e

We say that ⋆ is distributive with recpect to ᵀ, if: ∀(x,y,z) ∈ E×E×E,

x⋆ (yᵀ z) = (x⋆ y)ᵀ (x⋆ z) and (yᵀ z)⋆ x = (x⋆ y)ᵀ (x⋆ z).

� Exemples 2.2 :
1. Let E a set. we provide P(E) by the internal composition law ∩ :
-The law ∩ is associative (A∩B)∩C = A∩ (B∩C) .
-The law ∩ is commutative A∩B = B∩A.
-The law ∩ accept a neutral element E: A∩E = E ∩A = A
-The law ∩ does not accept an inverse element.
2. We define on Z the law of internal composition ᵀ by nᵀm = n+m−3
-ᵀ is associative
(nᵀm)ᵀ p = (n+m−3)ᵀ p = n+m−3+ p−3 = n+m+ p−6,
nᵀ (mᵀ p) = nᵀ (m+ p−3) = n+m+ p−3−3 = n+m+ p−6.
-ᵀ is a commutative nᵀm = n+m−3 = m+n−3 = mᵀn
-ᵀ accept a neutral element e = 3 : n+ e−3 = n =⇒ e = 3
- An inverse element of n with recpect to ᵀ is n′ = 6−n : n+n′−3 = 3 =⇒ n′ = 6−n

Proposition 2.0.1 Let ⋆ be an internal composition law in E, then following properties
hold:

• The neutral element is unique;
• The inverse of any element x ∈ E is unique (i.e., x has only one inverse, i.e., if x has

2 inverses then they are equal);
• For every x ∈ E,

(
x−1)−1

= x.
• For every x,y ∈ E, (x⋆ y)−1 = y−1 ⋆ x−1.

Proof. • The neutral element is unique: Let e and s be two neutral elements, then by
the definition we have

e = e⋆ e′ = e′ ⋆ e, and e′ = e⋆ e′ = e′ ⋆ e,

so

e = e′.

• The inverse of any element x ∈ E is unique: By Definition, let x−1
1 ,x−1

2 be two
inverses of x, which means that x ⋆ x−1

1 = x−1
1 ⋆ x = e.and x ⋆ x−1

2 = x−1
2 ⋆ x = e.

Computing x−1
1 ⋆ x⋆ x−1

2 we obtain:

x−1
1 ⋆ x⋆ x−1

2 = e⋆ x−1
2 = x−1

2 (using that x−1
1 ⋆ x = e ),

and

x−1
1 ⋆ x⋆ x−1

2 = x−1
1 ⋆ e = x−1

1 (using that x⋆ x−1
2 = e ).

So

x−1
1 = x−1

2 .
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• For every x ∈ E,
(
x−1)−1

= x : We want to show that the inverse of x−1 is equal to
x, then

e =
(
x−1)−1

⋆ x−1 ⇔ x⋆ x−1 =
(
x−1)−1

⋆ x−1

and
e = x−1 ⋆

(
x−1)−1 ⇔ x⋆ x−1 = x−1 ⋆

(
x−1)−1

.
So (

x−1)−1
= x.

• For every x,y ∈ E, (x⋆ y)−1 = y−1 ⋆ x−1 :

(x⋆ y)⋆
(
y−1 ⋆ x−1)= (x⋆ (y⋆ y−1))⋆ x−1 = (x⋆ e)⋆ x−1 = x⋆ x−1 = e

In the same way we show that

(
y−1 ⋆ x−1)⋆ (x⋆ y) = e

then we deduce that (x⋆ y) is invertible and that

(x⋆ y)−1 = y−1 ⋆ x−1.

�

2.0.2 Group Structure
Groups
Définition 2.0.1 We call a group any group provided with an I.C.L which we note "⋆",
such that

1. ⋆ is associative,
2. ⋆ has a neutral element,
3. Every element of G has an inverse with recpect to ⋆.

We denote (G,⋆) group. If, ⋆ is commutative, then (G,⋆) is called a commutative group
or abelian group.

� Exemples 2.3 :
(R,+),(Z+),(C,+) and (Q∗, .) are groups.

Subgroups
Let (G,⋆) be a group, of the neutral element e and let H ⊂ G with H ̸= ∅. We say that
(H,⋆) is a subgroup of (G,⋆), if and only if


1).e ∈H,
2).∀a,b ∈H, a⋆b ∈H,

3).∀a ∈G, a ∈H=⇒ a−1 ∈H.

� Exemples 2.4 :
(G,⋆),({e} ,⋆) are subgroups.
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Proposition 2.0.2 Let (G,⋆) be a group and H⊂G, then

H is a subgroup of G⇐⇒
{

H ̸=∅
∀a,b ∈H, a⋆b−1 ∈H.

Proof. 1. Let H be a subgroup of (G,⋆), then :
i) e an neutral element in H, then H ̸=∅.
ii) Let a,b ∈ H, since H provided with the law ⋆ is a group then b−1 exists in H and

since H is stable with recpect to ⋆ we deduce that a⋆b−1 ∈H.

2. Conversely, let H be a subset of G such that
{

H ̸=∅
∀a,b ∈H, a⋆b−1 ∈H.

Show that (H,⋆) is a group.
i) As H ̸=∅ then ∃a ∈H and according to the second hypothesis

e = a⋆a−1 ∈H,

which shows that the law ⋆ accept a neutral element e in H.
ii) Let x ∈H, since e ∈H then according to the second hypothesis we will have x−1 =

e⋆ x−1 ∈H
which shows that for every element x in H is invertible in H with recpect to the law ⋆

to H.
iii) The law ⋆ in H is an internal composition law, because for all x and y in H, ac-

cording to ii) we have y−1 ∈ H and using the second hypothesis we deduce that x ⋆ y =
x⋆ (y−1)−1 ∈H.

iv) The law ⋆ in H is associative, because ⋆ is associative in G. �

R From i) the prove of the previous proposition, we see that: If e is the neutral element
of a group G, then every subgroup of G contains e and we deduce the following
corollary.

Corollary 2.0.3 Let (G,⋆) is a group and H⊂G, then

H is a subgroup of G⇐⇒
{

e ∈H
∀a,b ∈H, a⋆b−1 ∈H.

� Exemples 2.5 : Let (G,⋆) be a group and H = {a ∈G;a⋆x = x⋆a,∀y ∈G}, then H is
a subgroup of G. Indeed,

i) If e is a identity element of ⋆, then e ∈H because : ∀x ∈G, e⋆ x = x⋆ e = x
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ii) Let a,b ∈H,c ∈G
(

a⋆b−1 ?
∈H

)
, then

(
a⋆b−1)⋆ c =

(
a⋆b−1)⋆ (c−1)−1

= a⋆
(

b−1 ⋆
(
c−1)−1

)
because ⋆ is associative,

= a⋆
(
c−1 ⋆b

)−1

= a⋆
(
b⋆ c−1)−1

because b ∈H
= a⋆ ((b−1)−1 ⋆ c−1)−1

= a⋆ (c⋆b−1)

= (a⋆ c)⋆b−1 because ⋆ is associative
= (c⋆a)⋆b−1 because a ∈H
= c⋆ (a⋆b−1) because ⋆ is associative

hence shows that a⋆b−1 ∈H.
From i) and ii) we deduce that H is a subgroup of G

2.0.3 Ring Structure
Rings
Définition 2.0.2 Let the set A provided with two internal composition laws ⋆.and ᵀ We
say that (A,⋆,ᵀ) is a ring if and only if

1. (A,⋆) is commutative group,
2. ᵀ is an associative,
3. ᵀ is a distributive on ⋆,
4. ᵀ accept a neutral element.
If ᵀ is a commutative, then (A,⋆,ᵀ) is called a commutative ring.
• Let (A,⋆) be a group, then x has an inverse we denote −x.
• If ᵀ has a neutral element, we note it 1 or 1A and we say that the ring (A,⋆,ᵀ) is

unitary
• For all x ∈ A, it is invertiblewith recpect to the second law ᵀ The inverse of an

element x ∈ A is denoted x−1.
• Let (A,⋆,ᵀ) be a commutative ring. We say that y ∈ A−{0A} is a divisor of x, if

∃z ∈ A−{0A} , x = yᵀ z.

• If 0A does not have a divisor in A, we say that (A,⋆,ᵀ) is an integrity ring.

� Exemples 2.6 :
1. (R,+,×) and (C,+,×) are rings.
2. Let E be a non-empty set. (P(E),∩,∪) is not a ring.

Sub-Rings
Définition 2.0.3 Let (A,⋆,ᵀ) be a ring with 0A is the neutral element of ⋆ and 1A is the
neutral element of ᵀ. Let H be a subset of A. We say that (H,⋆,ᵀ) is a subring of ((A,⋆,ᵀ)
if and only if

1. (H,⋆) is a subgroup of (A,⋆),
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2. ∀x,y ∈H, xᵀ y ∈H,
3. 1A ∈H

� Exemples 2.7 :
1. (Q,+,×) is a subring of (R,+,×).
2. (Z,+,×) is a subring of (Q,+,×).

Proposition 2.0.4 A subset H of A is a subring if and only if:
1. H ̸=∅,
2. ∀x,y ∈H, (x⋆ y−1) ∈H
3. ∀x,y ∈H, (xᵀ y) ∈H.

Proof. We know that H is a subgroup of (A,∗) if and only if

(H ̸=∅)∧ (∀x,y ∈H, (x⋆ y−1) ∈H),

so for H to be a subring of A, it suffices to see if the restriction of the second law ᵀ
is internal in H, It’s enough to show that (∀x,y ∈ H, (xᵀ y) ∈ H) , which completes the
proof of our proposition. �

2.0.4 Field Structure
Fields
Définition 2.0.4 Let the set K provided with two internal composition laws ⋆.and ᵀ We
say that (K,⋆,ᵀ) is a field if and only if

1. (K,⋆,ᵀ) is a ring,
2. ᵀ accept an identity element 1K,
3. For every element in K−{e⋆} has an inverse in K with respect to ᵀ. (Where e⋆ is

an identity element of ⋆)
If ᵀ is commutative, then (K,⋆,ᵀ) is called a commutative field.

� Exemples 2.8 :
1. (R,+,×),(Q,+,×) and (C,+,×) are fields.
2. Let E be a non-empty set. (P(E),∩,∪) is not a field.

Proposition 2.0.5 Every body is an integral ring.

Subfield
Définition 2.0.5 We call subfield, of a body (K,⋆,ᵀ), any subset K′ of K such that, pro-
vided with the restrictions of the laws ⋆ and ᵀ, is a body. K′ ⊂K is a subfield of (K,⋆,ᵀ)
if and only if

1. K′ ̸=∅,
2. ∀x,y ∈K′, (x⋆ y),(xᵀ y) ∈K′.

2.1 Exercises

Exercise 2.1.1: Study the properties (ICL, Commutativity, Associativity, Neutral
element, Inverse element) on E, for the following composition laws ⋆:

1. E= R and x⋆ y = x+ y−1.
2. E= Z and x⋆ y = x+ y− x2y.

(E,⋆) is it a commutative group?
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Solution:
1. For the first law:

i) ICL: ⋆ is an internal composition law in R, because: ∀(x,y) ∈ R×R,x+
y−1 ∈ R.

2i) Commutativity: ⋆ is a commutative, because: ∀(x,y) ∈ R×R,x ⋆ y = x+
y−1 = y+ x−1 = y⋆ x.

3i) Associativity: ⋆ is an associative, because: ∀(x,y) ∈ R×R :
(x⋆ y)⋆ z = (x+ y−1)⋆ z = (x+ y−1)+ z−1 = x+ y+ z−2,

and
x⋆ (y⋆ z) = x+(y⋆ z)−1 = x+(y+ z−1)−1 = x+ y+ z−2

4i) Neutral element: ∃?e ∈ R,∀x ∈ R;x⋆ e = e⋆ x = x,

x⋆ e = x+ e−1 = x =⇒ e = 1.

5i) Invese element: ∀x ∈ R,∃?x′ ∈ R;x⋆ x′ = x′ ⋆ x = 1,

x⋆ x′ = x+ x′−1 = 1 =⇒ x′ = 2− x ∈ R.

Then, (R,⋆) is a commutative group.
2. For the second law:

i) ICL: ⋆ is an internal composition law in Z, because: ∀(x,y) ∈ Z×Z,x+
y− x2y ∈ Z.

2i) Commutativity: ⋆ is not a commutative, because: ∀(x,y) ∈ Z×Z,x ⋆ y =
x+ y− x2y ̸= x+ y− y2x = y⋆ x.

3i) Associativity: ⋆ is not an associative, because: ∀(x,y) ∈ Z×Z :

 (x⋆ y)⋆ z = (x⋆ y)+ z− (x⋆ y)2 z =
(
x+ y− x2y

)
+ z−

(
x+ y− x2y

)2 z
and

x⋆ (y⋆ z) = x+(y⋆ z)− x2 (y⋆ z) = x+
(
y+ z− y2z

)
− x2 (y+ z− y2z

)
.

Then (x⋆ y)⋆ z ̸= x⋆ (y⋆ z) .
4i) Neutral element: ∃?e ∈ Z,∀x ∈ Z;x⋆ e = e⋆ x = x,

x⋆ e = x+ e− x2e = x =⇒ e(1− x2) = 0 =⇒ e = 0, (to the right )

and

e⋆ x = e+ x− e2x = x =⇒ e(1− ex2) = 0 =⇒ e = 0. (to the left)

Then e = 0.
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5i) Invese element: ∀x ∈ Z,∃?x′ ∈ Z;x⋆ x′ = x′ ⋆ x = 0,

x⋆ x′ = x+ x′− x2x′ = 0 =⇒ x′ =
x

x2 −1
/∈ Z. (in general)

For example for x =±1 or x = 2 , does not exist x′ in Z such that ±1⋆x = 0
or 2⋆ x = 0.
So x does not accept an inverse on Z. Then (Z,⋆) does not form a group.

Exercise 2.1.2: We define the composition law ⋆ on E= R∗×R, by:

∀(a,b) ,(c,d) ∈ E : (a,b)⋆ (c,d) = (ac,ad +b) .

Show that (E,⋆) is a non-commutative group.

Solution:
1) ICL: ⋆ is an internal composition law in R∗×R, because: ∀(a,b) ,(c,d) ∈ R∗×

R : ac ∈ R∗, and ad +b ∈ R.
2) Commutativity: ⋆ is not a commutative, because: ∀(a,b) ,(c,d) ∈ R∗×R : ad +

b ̸= ca+d.
3) Associativity: ⋆ is an associative, because: ∀(a,b) ,(c,d) ,(x,y) ∈ R∗×R :

{(a,b)⋆ (c,d)}⋆ (x,y) = (acx,acy+ad +b) ,
and

(a,b)⋆{(c,d)⋆ (x,y)}= (acx,acy+ad +b) .

4) Neutral element: ∃? (e, f ) ∈ R∗×R,∀(a,b) ∈ R∗×R;(a,b) ⋆ (e, f ) 1
= (a,b) 2

=
(e, f )⋆ (a,b) ,

1
=) : (a,b)⋆ (e, f ) = (a,b) =⇒ (ae,a f +b) = (a,b)⇒{e = 1 and f = 0,

and
2
=) : (e, f )⋆ (a,b) = (a,b) =⇒ (ea,eb+ f ) = (a,b)⇒{e = 1 and f = 0,

then (e, f ) = (1,0) .
5) Invese element: ∀(a,b) ∈ R∗×R,∃? (a′,b′) ∈ R∗×R;(a,b)⋆ (a′,b′) 1

= (1,0) 2
=

(a′,b′)⋆ (a,b) ,
1
=) : (a,b)⋆

(
a′,b′

)
= (1,0) =⇒

(
aa′,ab′+b

)
= (1,0)⇒

{
a′ =

1
a

and b′ =
−b
a
,

and
2
=) :

(
a′,b′

)
⋆ (a,b) = (1,0) =⇒

(
a′a,a′b+b′

)
= (1,0)⇒

{
a′ =

1
a

and b′ =
−b
a
,

then (a′,b′) =
(1

a ,−b
a

)
.

Then, (E,⋆) is a non-commutative group.
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Exercise 2.1.3:
1. Let (G,⋆) be a non-commutative group. Show that the center

C(G) = {a ∈G;x⋆a = a⋆ x,∀x ∈G} ,

is a subgroup of (G,⋆).
2. Show that the center A= {(a,0) ;a ∈ Z} is a subgroup of

(
Z2,+

)
.

Solution:
1) Show that the center C(G)= {a ∈G;x⋆a = a⋆ x,∀x ∈G} is a subgroup of (G,⋆).

(let e be a neutral element)
(a) C(G) ̸=∅, because ∀x ∈G : x⋆ e = e⋆ x ⇒ e ∈C(G).

(b) Let a ∈C(G) : a−1 ?
∈C(G), then let x ∈G :

x⋆a−1 = e⋆ x⋆a−1

= a−1 ⋆a⋆ x⋆a−1

= a−1 ⋆ x⋆a⋆a−1

= a−1 ⋆ x⋆ e = a−1 ⋆ x,
then a−1 ∈C(G).

(a) Let a,b ∈C(G) : a⋆b
?
∈C(G), then let x ∈G :

x⋆a⋆b = a⋆ x⋆b = a⋆b⋆ x,

so a⋆b ∈C(G), and finally C(G) is a subgroup of (G,⋆) .
2) Show that the center A = {(a,0) ;a ∈ Z} is a subgroup of

(
Z2,+

)
. (Remark

(0,0) is a neutral element of
(
Z2,+

)
and (−a,−b) is an inverse element of

(a,b)).
(a) A ̸=∅, because (0,0) ∈ A.
(b) For all (a,0) ∈C(G) : (−a,0) ∈ A, because −a ∈ Z
(c) For all (a,0) ,(b,0)∈A : (a,0)+(b,0) = (a+b,0)∈A, because a+b ∈Z

Finally A is a subgroup of
(
Z2,+

)
.

Exercise 2.1.4: We consider on R the following two internals composition laws:

x⊕ y = x+ y−1, and x⊗ y = x+ y− xy.

1. Show that ⊗ is an associative and a commutative.
2. (R,⊕,⊗) is it a commutative ring?
3. (R,⊕,⊗) is it a field?

Solution:
1 Show that ⊗ is an associative and a commutative. So, let x,y,z ∈ R, then

x⊗ y = x+ y− xy = y+ x− yx = y⊗ x,

and therefore ⊗ is a commutative. And for the asociativity, show that x ⊗



36 Chapter 2. Algebraic Structure

(y⊗ z) = (x⊗ y)⊗ z
(x⊗ y)⊗ z = (x⊗ y)+ z− (x⊗ y)z

= x+ y+ z− xy− xz− yz+ xyz
and

x⊗ (y⊗ z) = x+(y⊗ z)− x(y⊗ z)
= x+ y+ z− xy− xz− yz+ xyz.

Hence the associativity
2 (R,⊕,⊗) is it a commutative ring?

(a) (R,⊕) it is a commutative group ( See exercise 1) ii) ⊗ is an associative
and a commutative.( Question 1)

(b) ⊗ accept a neutral element (so be it e′): show that ∃e′ ∈R,∀x ∈R;x⊗e′ =
e′⊗ x = x.

e′⊗ x = x⊗ e′ = x+ e′− xe′ = x ⇔ e′(1− x) = 0 ⇔ e′ = 0,

Then e′ = 0.
(c) ⊗ is distributive on ⊕. So, let x,y,z ∈ R, it is enough to verify that

1) : (x⊕ y)⊗ z = (x⊗ z)⊕ (y⊗ z)
and

2) : x⊗ (y⊕ z) = (x⊗ y)⊕ (x⊗ z)
and sinse ⊗ is a commutative, so it is enough to verify 1) or 2), then

(x⊕ y)⊗ z = (x⊕ y)+ z− (x⊕ y)z
= (x+ y−1)+ z− (x+ y−1)z = x+ y+2z− xz− yz−1

and
(x⊗ z)⊕ (y⊗ z) = (x⊗ z)+(y⊗ z)−1

= x+ z− xz+ y+ z− yz−1 = x+ y+2z− xz− yz−1
Hence ⊗ is distributive on ⊕.
Conclusion: (R,⊕,⊗) is a commutative ring.

3 (R,⊕,⊗) is it a field
It is enough to verify that there exist an inverse element for all x ∈ R−{e = 1}
with recpect to the law ⊗. So let x ∈ R,∃?x′ ∈ R, such that x⊗ x′ = x′⊗ x = 0,

x⊗ x′ = x′⊗ x = 0 =⇒ x+ x′− xx′ = 0 =⇒ x′ =
x

1− x
.

Then for all x ∈ R−{1} , accept an inverse element x′ = x
1−x ∈ R.

Finallywe conclude that (R,⊕,⊗) is a commutative ring.

2.2 Additional exercises

Exercise 2.2.1: We define the internal composition law △ on Q, by:

∀α,β ∈Q : α△β = (α −1)(β −1)+1.

(Q,△) is it a commutative group?
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Exercise 2.2.2: We consider on R the following two internals composition laws:

x⊕ y = x+ y−2, and x⊗ y = xy−2x−2y+6.

1. Show that (R,⊕) is a commutative group.
2. Show that ⊗ is associative and that it accept a neutral element.
3. (R,⊕,⊗) is it a commutative ring?
4. (R,⊕,⊗) is it a body?

Exercise 2.2.3: Let (R,⋆) be a commutative group, and e it is neutral element.
PART I: Let H = {x ∈ R : x⋆ x = e} a subset of R.
- Prove that (H,⋆) is a subgroup of (R,⋆).
PART II: Let the law ⋆ defined by:

∀x,y ∈ R; x⋆ y = x+ y−2.

And for all n ∈ N∗, we pose x(1) = x and x(n+1) = x(n) ⋆ x
(a) Calculate x(2), x(3) and x(4).
(b) Prove that ∀n ∈ N∗ : x(n) = nx−2(n−1) .





3. Rings of Polynomials

3.0.1 Concepts
In the following, K= R or C

• A polynomial P, is an expression of the form

P =
i=0

∑
i=n

aiX i = anXn +an−1Xn−1 + · · ·+a1X +a0,

where n ∈ N, and the coefficients ai, i ∈ {0, ...,n}, are elements of K.
• The set of all polynomials with coefficients in K is denoted by K [X ].

K [X ] = { the polynomials with coefficients in K}.

• A polynomial P ∈ K [X ] is said to be zero polynomial if all the coefficients an are
zero, i.e

P = 0 ⇐⇒ an = an−1 = · · ·= a1 = a0 = 0

• If an ̸= 0 then the degree of P is n, and we note degP = n, so

degP ≤ n ⇐⇒ P = anXn +an−1Xn−1 + · · ·+a1X +a0

• By convention the degree of the zero polynomial is −∞ (deg(0) =−∞.)
• If an = 1, we say that P is the monic (unitary) polynomial.

� Exemples 3.1 1) P1 = X6 −X +8, is a polynomial in R [X ]
2) P2(X) = X4 +5X2 − iX is a polynomial in C [X ]
3) Q1 = X6 −

√
X +8, Q2(X) = X4 +5sin

(
X2)− X

X2+1 are not polynomials
4) P3 = X7 −8X4 +13 is monic polynomail and degP3 = 7.
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3.0.2 Operations on K [X ]

On K [X ] we define the following laws, if P = anXn + an−1Xn−1 + · · ·+ a1X + a0,Q =
bmXm +bm−1Xm−1 + · · ·+b1X +b0, then:

1. P = Q ⇐⇒ ai = bi ∀i ∈ {0,1, . . . ,n}

2. P±Q =
i=0
∑

i=max(n,m)
(ai ±bi)X i, and deg(P±Q) = max(degP,degQ).

3. λP =
i=0
∑

i=n
λaiX i, with λ ∈K, and deg(λP) = degP.

4. PQ =
k=0
∑

k=n+m
ckXk such that ck =

i=0
∑

i=k
aibk−i.(ak = 0,∀k ≥ n+1, bk = 0,∀k ≥ m+1),

and deg(PQ) = degP+degQ.
5. K [X ] is stable for these laws, we say that it is an algebra

� Exemples 3.2 P = X3 +1, Q = X5 −X , then

2P−3Q =−3X5 +2X3 +3X +2, and deg(2P−3Q) = degg = 5.

and

PQ =
k=0

∑
k=8

ckXk = X8 +X5 −X4 −X ,and deg(PQ) = degP+degQ = 8.

c8 = c5 = 1,c7 = c6 = c3 = c2 = c0 = 0,and c1 =−1.

Associated polynomials
We say that A and B are associated if, and only if:

∃k ∈K A = kB or B = kA.

� Exemples 3.3 The polynomials X − 1
2 ,2X −1,−2X +1 are associated.

3.0.3 Polynomial Division
Theorem 3.0.1 Euclidean division ∀A,B ∈ K [X ]such that B ̸= 0, ∃Q,R ∈ K [X ] unique
such that A = BQ + R with degR < degB, or R = 0. Q is called the quotient of the
Euclidean division of A by B and R the remainder The rest).

Proof. • Existence: Let B = b0+b1X+. . .+bpX p ∈K [X ] be a fixed. The reasoning
is then done by induction on the degree of the polynomial A. The hypothesis of
recurrence at rank n, P(n) is:

∀A ∈K [X ] deg(A)≤ n, ∃(Q,R)∈K [X ] A = BQ+R et deg(R)< deg(B).

We notice if n < p, then P(n) is true: A = B.0+A. Let n ≥ p and assume the
recurrence hypothes is true for all k ≤ n−1 and show that then P(n) is true. The
polynomial A is written

A = a0 +a1X + · · ·+anXn, where an ̸= 0.

Let us then consider the polynomial C = A− an
bp

Xn−pB. The degree of degC ≤ n−1.
By induction hypothesis we then know that there exists a pair of polynomials (Q,R)
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such that: C =BQ+R and deg(R)< deg(B). It follows that A=B(Q+ an
bp

Xn−p)+R,
with ddeg(R)< deg(B).

• Uniqueness : Suppose that A = BQ+R = BQ′+R′ with degR < degB et degR′ <
degB Then deg(R−R′)≤max(degR,degR′)< degB or R−R′=B(Q′−Q). Hence

deg(Q′−Q)< 0 ⇒ Q′−Q = 0.

We deduce Q = Q′ and R = R′.
B divides A if and only if the rest of the Euclidean division of A by B is zero
polynomail.

�

� Exemples 3.4 1. Let P = X5 −X +2,Q = X3 +1 be two polynomail in K [X ] . Let
us divide Q by P

x5 − x+2 x3 +1
x2− x5 − x2

− x2 − x+2

Therefore,

X5 −X +2
X3 +1

= X2 +
−X2 −X +2

X3 +1

or equivalently,

X5 −X +2 = X2 (X3 +1
)
+
(
−X2 −X +2

)
.

That is A = BQ+R where Q = X2, and R =−X2 −X +2.
2.

2X4 −X3 +X2 +X −1 2X2 −3X
X2 +X +2−2X4 +3X3

2X3 +X2

−2X3 +3X2

4X2 +X
−4X2 +6X

7X −1

then 2X4 −X3 +X2 +X −1 =
(
2X2 −3X

)(
X2 +X +2

)
+(7X −1) .

3.

2X3 +5X2 +7X +8 X2 +X +2
2X +3−2X3 −2X2 −4X

3X2 +3X +8
−3X2 −3X −6

2

2X3 +5X2 +7X +8 =
(
X2 +X +2

)
(2X +3)+2.
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Euclidean divisions
Définition 3.0.1 Let A and B two be polynomials in K [X ]. We say that A is a divisor of
B, if and only if ∃!Q ∈K [X ] such that B = AQ, we note B\A. If, moreover, B is not a zero
polynomial, then Q is unique.

� Exemples 3.5 1. The polynomial X is a divisor of X3 +X .
2. The polynomials X + i,X − i,X +1 are a divisors of X3 +X .
3. Every polynomial is a divisor of zero polynomial.

Proposition 3.0.2 Let A,B and C be three polynomials in K [X ], then we have
1. A\B =⇒ degA ≤ degB.
2. A\B∧B\C =⇒ A\C.
3. A\B∧B\A =⇒∃λ ∈K,such that A = λB

Proof. 1. A\B =⇒∃Q ∈K [X ] , such that B = QA, then deg(B) = deg(AQ) = degA+
degQ, since degA ≤ degB.

2. A\B∧B\C =⇒∃Q1,Q2 ∈K [X ] , such that B=Q1A and C =Q2B then C =Q2Q1A=
QA, since A\C.

3. A\B∧B\A =⇒ deg(A)≤ deg(B) and deg(B)≤ deg(A), since degA = degB. And
• A\B∧B\A=⇒∃Q1,Q2 ∈K [X ] , such that B=Q1A and A=Q2B then degQ2 =

degQ1 = 0, since Q2,Q1 are constants.
�

Division according to increasing powers
Theorem 3.0.3 Let A and B be two polynomails in K [X ] and k ∈ N∗. Then, there exists
unique Q,R ∈K [X ] such that

A = BQ+Xk+1R

with, degQ ≤ k, if Q ̸= 0.
1. 52X +3X2 −X3 = (1+2X −X3)(2X −X2 +3X2 +X4)+X4+1(−4−X).
2. −1+X +X2 = (−2+X)

(1
2 −

1
4X − 5

8X2)+X2+1 (5
8

)
.

Roots of a polynomial
Définition 3.0.2 Let P be a polynomial in K [X ] and α ∈K. We say that α is a root (zero)
of P if P(α) = 0.
α is the root of order k (with k ∈N∗),( or of multiplicity k), if there exists Q ∈K [X ] such
that P = (X −α)kQ with Q(α) ̸= 0.

� Exemples 3.6 X4 − 1 accept two real roots 1,−1 and accept four roots in C 1,−1, i
and −i.

Proposition 3.0.4 Let P ∈K [X ] and α ∈ K : α is a root of P if and only X −α divides P.

Proof. Let us carry out the Euclidean division of P by X−α: P=(X−α)Q+R where the
degR < deg(X −α). Therefore the polynomial R is the zero polynomial or the constant
polynomial, but P(α) = 0, then P(α) = (α − α)Q + R(α) = R = 0. We deduce the
proposition. �

Theorem 3.0.5 (D’Alembert-Gauss Theorem) Every non-constant polynomial of C[X ]
accept at least one root in C.
Corollary 3.0.6 A non-zero polynomial of degree n ∈ N admits at most n roots.
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3.0.4 Reducibility
Définition 3.0.3 We say that a polynomial P(degP ≥ 1) is irreducible if all the divisors
of P are constant polynomials.
Définition 3.0.4 We say that a polynomial P(degP ≥ 1) is reducible if there exists Q,R
∈K [X ] such that degQ ≥ 1,degR ≥ 1 and P = QR.
Theorem 3.0.7 The only irreducible polynomials of R[X ] are:

• The polynomials of degree 1.
• The polynomials of degree 2 with the discriminant strictly negative .(∆= b2−4ac<

0).
Corollary 3.0.8 The irreducible polynomials of C[X ] are exactly of degree 1.

R A polynomail is irreducible of R[X ], it can be reducible to C[X ]. Then, it is clear that
if a polynomial is reducible from R[X ], then it is necessarily reducible from C[X ].

� Exemples 3.7 • All polynomials of degree "1" are irreducible in R[X ] and in C[X ].
• The polynomials X3 − 1, X2 − 3 and X3 + 1 are irreducible in R[X ] and in C[X ].

Actually,
X3 −1 = (X −1)(X2 +X +1), and X2 −3 =

(
X −

√
3
)(

X −
√

3
)
.

• The polynomial X2 +1 is irreducible in R[X ], but it is reducible in C[X ], because

X2 +1 = (X − i)(X + i).

3.0.5 Greatest Common Divisor (g.c.d)
Définition 3.0.5 (g.c.d) Let A and B be two polynomials in K [X ] both non-zero, then
there exists a unique unitary polynomial D (not both zero) of greatest degree which divides
both A and B. This polynomial is called the greatest common divisor of A and B and we
note gcd(A;B) = D.

� Exemples 3.8

gcd
(
X3 +3X2 +3X +1,X3 +2X2 +2X +1

)
= X +1

Définition 3.0.6 Two polynomials are said to be coprime if their GCD is 1

Euclid’s algorithm
Let A and B be two non-zero polynomials such that degA ≥ degB. So, Euclid’s algorithm
consists of performing Euclidean divisions until obtaining a zero remainder, as follows

A = BQ1 +R1,

then, we divide B on R1, we have

B = R1Q2 +R2.

Now, we divide R1 on R2, we have
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R1 = R2Q3 +R3,

We continue the divisions: R2 on R3, R3 on R4 · · · until we obtain a zero remainder,
as follows

Rk−1 = RkQk+1 +Rk+1; and Rk = Rk+1Qk+2.

The g.c.d of A and B is Rk+1, that is to say the last non-zero remainder.
As the g.c.d is unique and monic, we take the monic polynomial associated with the last
non-zero remainder of Euclid’s algorithm.

� Exemples 3.9 A = 2X4 −X3 +X2 +X −1 and B = 2X2 −3X .

2X4 −X3 +X2 +X −1 2X2 −3X
X2 +X +2−2X4 +3X3

2X3 +X2

−2X3 +3X2

4X2 +X
−4X2 +6X

7X −1

2X4 −X3 +X2 +X −1︸ ︷︷ ︸
A

=
(
2X2 −3X

)︸ ︷︷ ︸
B

(
X2 +X +2

)︸ ︷︷ ︸
Q1

+(7X −1)︸ ︷︷ ︸
R1

,

and

2X2 −3X 7X −1
2
7X − 19

49−2X2 + 2
7X

− 19
7 X
19
7 X − 19

49

− 19
49

(
2X2 −3X

)︸ ︷︷ ︸
B

= (7X −1)︸ ︷︷ ︸
R1

(
2
7

X +2
)

︸ ︷︷ ︸
Q2

+

(
−19
49

)
︸ ︷︷ ︸

R2

,

and

7X −1 − 19
49

− 343
19 X + 49

19−7X
−1

1
0
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(7X −1)︸ ︷︷ ︸
R1

=

(
−19
49

)
︸ ︷︷ ︸

R2

(
−343

19
X +

49
19

)
︸ ︷︷ ︸

Q3

+0

Then gcd(A,B) = −49
19 R2 = 1

Theorem 3.0.9 (1st Bézout’s Theorem) Let A and B be two non-zero polynomials in
K [X ]. If D = pgcd(A,B), then there exist two polynomials U , V ∈ K [X ] such that AU +
BV = D.

� Exemples 3.10 Find a Bézout relation from the example presented previously:

B = R1Q2 +R2 ⇐⇒ B−R1Q2 = R2

⇐⇒ B− (A−BQ1)Q2 = R2

⇐⇒ −Q2A+(1+Q1Q2)B = R2 = D,

that is to say

U =−Q2 =−X −2, et V = (1+Q1Q2) = 1+(X −2)(X +2) = X2 −3

Coprime polynomails
Theorem 3.0.10 (2nd Bézout’s Theorem)

Two polynomials A and B are coprime if and only if there exist two polynomials U
and V such that AU +BV = 1.
Theorem 3.0.11 (Gauss’s Theorem)

If a polynomial divides a product of two polynomials and it is prime with one of the
factors, it divides the other.

(A\BC and A∧B = 1) =⇒ A\C

3.0.6 Factoring a polynomial into irreducible
Theorem 3.0.12 Let P ∈K [X ] be a non-constant polynomial, then there exist k ∈N∗ and
irreducible polynomials P1,P2, · · · ,Pk of K [X ], such that

P = βPα1
1 Pα2

2 · · ·Pαk
k ,

where, β ∈K∗ and α1,α2, · · · ,αk ∈ N∗. The polynomials P1,P2, · · · ,Pk are unique up
to permutation.

� Exemples 3.11 1. Decompose P = X8 +X4 +1 into irreducible factors in R[X ], in
C[X ].

a In R[X ], we have

X8 +X4 +1 = (X4 +1)2 −X4 = (X4 +1+X2)(X4 +1−X2)

also
(X4 +1+X2) = (X2 +1)2 −X2 = (X2 +1+X)(X2 +1−X)

and
X4 −X2 +1 = (X2 +1)2 −3X2 = (X2 +1+

√
3X)(X2 +1−

√
3X),



46 Chapter 3. Rings of Polynomials

Then

P = (X2 +X +1)(X2 −X +1)(X2 +
√

3X +1)(X2 −
√

3X +1).

b In C[X ],we can search for the roots of P in C[X ], we have

X2 +1+X =

(
X +

1+ i
√

3
2

)(
X +

1− i
√

3
2

)
,

X2 +1−X =

(
X − 1+ i

√
3

2

)(
X − 1− i

√
3

2

)
,

X2 +1+
√

3X =

(
X +

√
3− i
2

)(
X +

√
3+ i
2

)
,

X2 +1−
√

3X =

(
X −

√
3− i
2

)(
X −

√
3+ i
2

)
.

Then

P =

(
X +

1+ i
√

3
2

)(
X +

1− i
√

3
2

)(
X − 1+ i

√
3

2

)(
X − 1− i

√
3

2

)

×

(
X +

√
3− i
2

)(
X +

√
3+ i
2

)(
X −

√
3− i
2

)(
X −

√
3+ i
2

)
.

2. Decompose P = X5 +1 into irreducible factors in R[X ] and in C[X ].
a In C[X ]. We will search for the complex roots of the form eiθ , as follows(

eiθ
)5

+1 = 0 ⇐⇒ ei5θ =−1 = ei(2k+1)π ,k ∈ Z.

We can choose

5θ = (2k+1)π,k ∈ Z⇐⇒ θ =
π
5
+

2kπ
5

.

Which implies,

α1 = ei π
5 , α2 = ei 3π

5 , α3 = ei 5π
5 =−1, α4 = ei 7π

5 , α5 = ei 9π
5 .

So, the factorization of X5 +1 is

X5 +1 = (X +1)
(

X − ei π
5

)(
X − ei 3π

5

)(
X − ei 7π

5

)(
X − ei 9π

5

)
.

b In R[X ]: According to the previous method on C, we have

α1 = α5, α2 = α4, α3 = eiπ =−1,

then
X5 +1 = (X +1)(X −α5)(X −α5)(X −α4)(X −α4)

= (X +1)
(
X2 − [α5 +α5]X +α5α5

)(
X2 − [α4 +α4]X +α4α4

)
= (X +1)

(
X2 −2cos

(π
5

)
X −1

)(
X2 −2cos

(
3π
5

)
X −1

)
.

Then X5 +1 is reducible in R



4. Rational fractions

• A rational fraction in K is written F = P
Q , where P and Q are polynomials in K,

with Q ̸= 0.
• We say that the representative P

Q of F is irreducible, if the polynomials P and Q are
coprime.

• Every rational fraction has a unique irreducible representative

� Exemples 4.1 :
1. F=X5−X4+5

X3−3X+2 .

2. The rational fraction F = X4−X2

X2−3X+2 , accept an irreducible form F = X2(X+1)
X−2

4.0.1 Roots and poles of a rational fraction
• We call roots (zeros) of the rational fraction F = P

Q (supposed to be irreducible) the
roots of the numerator P, and poles the roots of the denominator Q.

• We call degree of the rational fraction F = P
Q the relative integer:

deg
(

P
Q

)
= degP−degQ

� Exemples 4.2 The rational fraction F = X4−X2

X2−3X+2 , accept the roots 0,1,−1 and accept
the poles 1,2.

4.0.2 Decomposition into simple elements
Définition 4.0.1 We say that P

Q with P×Q ̸= 0 is a simple element iff degP< degQ,gcd(P,Q)=
1, Q is an irreducible polynomial.

Simple element in C :
A simple element in C is a fraction of the form b

(X−α)n , where a ∈C∗,b ∈C and n ∈N∗.



48 Chapter 4. Rational fractions

Simple element in R :
A simple element in R is a fraction which can have one of the following forms:

1. b
(X−α)n , where a ∈ R∗,b ∈ R and n ∈ N.

2. aX+b
(X2+αX+β )n where a,b,α,β ∈ R and α2 − 4β < 0, and a,b non-zero at the same
time.

� Exemples 4.3 1. 5−i
(X−2)3 , i

X+3i are simple elements in C

2. 7
(X+2)3 , 5

X+3 are simple elements in C and in R.

3. 2X
(X2+X+5)6 ,

4
(X2−4X+7)2 ,

X−3
X2+3X+5 are simple elements in R.

General method of decomposition
• A rational fraction, of irreducible form F = P

Q , with degP ≥ degQ, is written
uniquely, in the form:

F = E + R
Q with degR < degQ.

E is the integer part and R
Q the fractional part of F .

� Exemples 4.4 :

X3 +X2 +1
X2 +1

= X +1+
−X

X2 +1
.

Theorem 4.0.1 Let R
Q with degR < degQ a rational fraction. Suppose Q = Q1Q2 with

gcd(Q1,Q2) = 1. There exists a unique pair (R1,R2) of polynomials such that:

R
Q

=
R1

Q1
+

R2

Q2
, with degR1 < degQ1 and degR2 < degQ2.

� Exemples 4.5 F(X) = X
(X−1)(X−2) =

−1
X−1 +

2
X−2 .(in R [X ])

Corollary 4.0.2 Any rational fraction R
Q with degR < degQ, acceptting a pole of order m

is uniquely decomposed into:

R
Q

=
R

(X −α)m Q2
=

R1

(X −α)m +
R2

Q2
, with degR1 < m and degR2 < degQ2.

The term R1
(X−α)m is called the polar part of R

Q relative to the pole α

� Exemples 4.6 F(X) = 2X3+3X2+2X
(X+1)2(X2+X+1)

= X
(X+1)2 +

X
X2+X+1 .(in R [X ])

Theorem 4.0.3 Let R
(X−α)m , with degR < m, a polar part of a pole α . There are unique

constants (c1,c2, · · · ,cm) such that:

R
(X −α)m =

m

∑
k=1

ck

(X −α)k .

� Exemples 4.7 F(X) = 7X−4
(X−1)2 =

7
X−1 +

3
(X−1)2 .(in R [X ])
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Corollary 4.0.4 Let Q =
p

∏
i=1

(X −αi)
mi a polynomail. Any rational fraction with denom-

inator Q and strictly negative degree is uniquely decomposed into:

R
Q

=
p

∑
i=1

Ri

(X −αi)
mi with ∀i ∈ 1,P degRi < mi.

4.0.3 Practical examples

� Exemples 4.8 :
Research for the polar parts of the rational fraction:

F =
X
(
X2 +1

)2

(X2 −1)2

Extract the entire part:

X
(
X2 +1

)2

(X2 −1)2 = X +
4X3

(X2 −1)2 = X +
4X3

(X +1)2 (X −1)2 . (4.1)

Decomposition the fraction G(X) = 4X3

(X2−1)
2 into simple elements,

1. 1st Method: We have

4X3

(X2 −1)2 =
4X3

(X +1)2 (X −1)2 .

Applying Euclid’s algorithm to polynomials (X +1)2 and (X −1)2:

(X +1)2 = (X −1)2 +4X = X (X −2)+1,

then

1 = (X −1)2 X +2
4

− (X +1)2 X −2
4

.

We deduce

1

(X2 −1)2 =
X +2

4(X +1)2 −
X −2

4(X −1)2 .

Then

4X3

(X2 −1)2 =
X4 +2X3

(X +1)2 − X4 −2X3

(X −1)2 .
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Calculating the integer part of the two terms:
4X3

(X2 −1)2 =
X4 +2X3 +X2 −X2

(X +1)2 − X4 −2X3 +X2 −X2

(X −1)2

=
X2 (X +1)2 −X2

(X +1)2 − X2 (X −1)2 −X2

(X −1)2

= X2 − X2

(X +1)2 −X2 +
X2

(X −1)2

=
X2

(X −1)2 −
X2

(X +1)2

=
X2 −2X +1+2X −1

(X −1)2 − X2 +2X +1−2X −1

(X +1)2

= 1+
2X −1

(X −1)2 −1+
2X +1

(X +1)2

=
2X −1

(X −1)2 +
2X +1

(X +1)2 .

So:

F = X +
2X −1

(X −1)2 +
2X +1

(X +1)2 .

Decomposition of the polar parts found in the previous example:

2X +1 = 2(X +1)−1; hence
2X +1

(X +1)2 =
2

X +1
+

−1

(X +1)2 ,

and

2X −1 = 2(X −1)+1; hence
2X −1

(X −1)2 =
2

X −1
+

1

(X −1)2 .

Finally

F = X +
2

X −1
+

1

(X −1)2 +
2

X +1
+

−1

(X +1)2 .

2. 2nd Method:
The fraction G accepts a decomposition of the form:

G(X) =
a

X +1
+

b

(X +1)2 +
c

X −1
+

d

(X −1)2

• Note that G is odd and compare the decompositions of G(−X) and −G(X):

G(−X) =
−a

X −1
+

b

(X −1)2 +
−c

X +1
+

d

(X +1)2

−G(X) =
−a

X +1
+

−b

(X +1)2 +
−c

X −1
+

−d

(X −1)2

Then

G(−X) =−G(X)⇒
{

a = c
b =−d .
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• For find b, we multiply G by (X +1)2

(X +1)2G =
4X3

(X −1)2 = a(X +1)+b+
c(X +1)2

X −1
+

d(X +1)2

(X −1)2 .

By replacing X with −1, we obtain b =−1, then d = 1.
This method makes it possible to find the coefficient of the highest degree
term of each polar part.

• For find the coefficients a and c, we multiply G by X :

XG(X) =
4X4

(X −1)2 =
aX

X +1
+

bX

(X +1)2 +
cX

X −1
+

dX

(X −1)2 .

By research for the limit of XG(X) in +∞, we obtain:

lim
x→+∞

xG(x) = 4 = a+ c, then a = c = 2.

This method makes it possible to find the sum of the lowest degree coeffi-
cients of all the polar parts. Eventually„ we obtain:(a,b,c,d) = (2,−1,2,1).

G =
2

X −1
+

1

(X −1)2 +
2

X +1
+

−1

(X +1)2 .

� Exemples 4.9 :
Decomposition into simple elements

F =
X3 +1
(X −2)4 .

By divide successively on X −2:

X3 +1 = (X −2)(X2 +2X +4)+9

⇒ X3 +1
(X −2)4 =

X2 +2X +4
(X −2)3 +

9
(X −2)4 ,

and

X2 +2X +4 = (X −2)(X +4)+12

⇒ X2 +2X +4
(X −2)3 =

X +4

(X −2)2 +
12

(X −2)3 ,

and

X +4 = (X −2)+6
X +4

(X −2)2 =
1

(X −2
+

6
(X −2)3 .

Finally,

F =
1

X −2
+

6
(X −2)3 +

12
(X −2)3 +

9
(X −2)4 .
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� Exemples 4.10 : In C [X ] .

F =
3X +1
X2 +1

=
a

X − i
+

b
X + i

Multiply both sides of the equality by (X − i) and replacing X by i, we obtain a = 3−i
2 .

Multiply both sides of the equality by (X + i) and replacing X by -i, we obtain b = 3+i
2 .

We conclude,

F =
3X +1
X2 +1

=
3− i

2(X + i)
+

3+ i
2(X − i)

4.0.4 Practical decomposition methods
Study plan:

a We put F = P
Q in irreducible form by simplifying by the GCD of the numerator P

and the denominator Q.
b We obtain E and R using the Euclidean division of P by Q.
c We factor B into irreducible polynomials.
d We write the literal form of the decomposition into simple elements of F , or of P

Q .
e We determine the coefficients using various methods.

4.1 Exercises solved

Exercise 4.1.1:
1. Find the polynomials P of degree 3, such that

P(0) = 1,P(1) =−1,P(−1) = 3,P(2) = 5.

2. Under what condition on a,b,c ∈ R, the polynomial X4 + aX2 + bX + c is
divisible by X2 +X −2?

3. Find the polynomials of degree 2 such that P′ divides P.
4. (TP) Find the polynomials P of degree 3, such that

P(0) = 0 and P(X +1)−P(X) = X2.

5. The following statements are true or false:
(a) A polynomial of degree 3 is always reducible in R[X ].
(b) P is irreducible in R[X ], if and anly if degP = 1.
(c) A polynomial P ∈ R[X ] of degree 5 accept at least one real root.

Solution:
1.
2. P = aX3 +bX2 + cX +d where a,b,c and d satisfy the following equations:

d = 1
a+b+ c+d =−1
−a+b− c+d = 3
8a+4b+2c+d = 5
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then,

P =
4
3

X3 − 10
3

X +1.

3. The rest of the division of X4 +aX2 +bX + c by X2 +X −2 is

R = (b−a−5)X +2a+ c+6.

For it to be zero it is necessary that

b = a+5 and c =−2a−6.

4. The rest of the division of P = aX2 +bX + c by P′ = 2aX +b is

R = c− b2

4a
.

So the condition is

4ac = b2.

5. (TP) P = 1
3

(
X3 −2X2 +X

)
.

6. True or False
(a) Is true, because the degree of P is odd number.
(b) (degP = 1)⇒ (P is irreducible in R[X ]), is true. And (P is irreducible in

R[X ])⇒ (degP = 1) , is false.
(c) Is true. because the graph of polynomail of degree odd always pass by the

axis (Ox).

Exercise 4.1.2: Let the polynomial P(X) = X8 +X4 +1
1. Show that P does not admit real roots.
2. P is it an irreducible polynomial of R[X ].

Solution:
1. We consider the function

X 7−→ P(X) = X8 +X4 +1.

So, we have

P′(X) = 8X7 +4X3 = X3 (8X4 +4
)
,

then,

P′(X) = 0 ⇔ X3 (8X4 +4
)
= 0 =⇒ X = 0.

Since, P(0) = 1 > 0, then graph of P(X) does not pass by the axis (Ox).
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2. As P does not accept any real root but it is of degree 8, then it is the product of
polynomials of degree 2, therefore it is reducible from R[X ].

Exercise 4.1.3: (gcd of polynomials)
1. Determine the D = gcd the following polynomials:

(a) A = X3 −X2 −X −2 and B = X5 −2X4 +X2 −X −2,
(b) A = X5 +3X4 +X3 +X2 +3X +1 and B = X4 +2X3 +X +2.

2. Find U and V of the previous D, such that AU +BV = D.

Solution:
1. The gcd of polynomials:

(a) gcd(A,B) = X −2,
(b) gcd(A,B) = X3 +1.

2. Determination of U and V such that AU +BV = D :
(a) A

(
−2

3X − 1
3

)
+B

(2
3X3 − 1

3X2 − 1
3X + 4

3

)
= X −2,

(b) A(−1)+B(X +1) = X3 +1.

Exercise 4.1.4:
1. Are the following polynomials irreducible in R[X ] or in C[X ]?

P(X) = X8 +X4 +1, Q(X) = X5 +1.

2. Factor these polynomials on R[X ], on C[X ].

Solution:
1. The polynomials P and Q are irreducibles in R[X ] and in C[X ], See the exercices

1 and 2
2. Decompose P = X8 +X4 +1 into irreducible factors in R[X ], in C[X ].

a) In R[X ], we have

X8 +X4 +1 = (X4 +1)2 −X4 = (X4 +1+X2)(X4 +1−X2)

also
(X4 +1+X2) = (X2 +1)2 −X2 = (X2 +1+X)(X2 +1−X)

and
X4 −X2 +1 = (X2 +1)2 −3X2 = (X2 +1+

√
3X)(X2 +1−

√
3X),

Then

P = (X2 +X +1)(X2 −X +1)(X2 +
√

3X +1)(X2 −
√

3X +1).
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b) In C[X ],we can search for the roots of P in C[X ], we have

X2 +1+X =

(
X +

1+ i
√

3
2

)(
X +

1− i
√

3
2

)
,

X2 +1−X =

(
X − 1+ i

√
3

2

)(
X − 1− i

√
3

2

)
,

X2 +1+
√

3X =

(
X +

√
3− i
2

)(
X +

√
3+ i
2

)
,

X2 +1−
√

3X =

(
X −

√
3− i
2

)(
X −

√
3+ i
2

)
.

Then

P =

(
X +

1+ i
√

3
2

)(
X +

1− i
√

3
2

)(
X − 1+ i

√
3

2

)(
X − 1− i

√
3

2

)

×

(
X +

√
3− i
2

)(
X +

√
3+ i
2

)(
X −

√
3− i
2

)(
X −

√
3+ i
2

)
.

3. Decompose Q = X5 +1 into irreducible factors in R[X ] and in C[X ].
a) In C[X ]. We will search for the complex roots of the form eiθ , as follows(

eiθ
)5

+1 = 0 ⇐⇒ ei5θ =−1 = ei(2k+1)π ,k ∈ Z.

We can choose

5θ = (2k+1)π,k ∈ Z⇐⇒ θ =
π
5
+

2kπ
5

.

Which implies,

α1 = ei π
5 , α2 = ei 3π

5 , α3 = ei 5π
5 =−1, α4 = ei 7π

5 , α5 = ei 9π
5 .

So, the factorization of X5 +1 is

X5 +1 = (X +1)
(

X − ei π
5

)(
X − ei 3π

5

)(
X − ei 7π

5

)(
X − ei 9π

5

)
.

b) In R[X ]: According to the previous method on C, we have

α1 = α5, α2 = α4, α3 = eiπ =−1,

then
X5 +1 = (X +1)(X −α5)(X −α5)(X −α4)(X −α4)

= (X +1)
(
X2 − [α5 +α5]X +α5α5

)(
X2 − [α4 +α4]X +α4α4

)
= (X +1)

(
X2 −2cos

(π
5

)
X −1

)(
X2 −2cos

(
3π
5

)
X −1

)
.
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Then X5 +1 is reducible in R[X ].

X5+1 = (X +1)
(

X2 −2cos
(π

5

)
X −1

)(
X2 −2cos

(
3π
5

)
X −1

)
.

Exercise 4.1.5: Let A and B be t wo polynomails such that :

A(X) = X5 +X4 −3X3 −3X2 +2X +2 and B(X) = X3 +1.

1. Show that (X +1) divides A(X).
2. Factor A and B on R[X ], on C[X ].
3. Determine the D = gcd(A,B)

Solution:
1. Show that (X +1) divise A(X).

(X +1) divise A(X)⇐⇒ (−1) is a root of A(X)⇐⇒ A(−1) = 0.

Then A(−1) = (−1)5 +(−1)4 −3(−1)3 −3(−1)2 +2(−1)+ 2 = 0, so (X +1)
divise A(X).

2. Factor A and B on R[X ], on C[X ].

(a) Factorization of A(X):
A is divisible by (X + 1) then by Euclidean division of A on (X + 1) we
obtain the quotient Q(X) = X4 −3X2 +2.
we assume Y = X2, then Q(Y ) = Y 2 −3Y +2.
Calculation: ∆: ∆ = 1, then the roots of Q(Y ) are Y1 = 1 and Y2 = 2. so
Q1(Y ) = (Y −1)(Y −2) .
Donc Q(X) =

(
X2 −1

)(
X2 −2

)
.

Also

X2 −1 = (X −1)(X +1) and X2 −2 =
(

X −
√

2
)(

X +
√

2
)
.

Finally the factorization of A on R[X ] and C[X ] is:

A(X) = (X +1)2 (X −1)
(

X −
√

2
)(

X +
√

2
)
.

(b) Factorization of B(X):

We note (−1) is a root of B(X), then by Euclidean division of B on (X +1)
we obtain the quotient K(X) = X2 −X +1.
Calculation: ∆: ∆ =−3, then the roots of K(X) in C[X ] are X1 =

1+i
√

3
2 and

X2 =
1−i

√
3

2 . So K(X) =
(

X − 1+i
√

3
2

)(
X − 1−i

√
3

2

)
.
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Finally the factorization of B on C[X ] is

B(X) = (X +1)

(
X − 1+ i

√
3

2

)(
X − 1− i

√
3

2

)
.

And the factorization of B on R[X ] is

B(X) = (X +1)
(
X2 −X +1

)
.

3. Determine the D = gcd(A,B):
According to the factorizations of A and B:

A(X) = A(X) = (X +1)2 (X −1)
(

X −
√

2
)(

X +
√

2
)
.

B(X) = (X +1)
(
X2 −X +1

)
.

We obtain

D = gcd(A,B) = X +1.

Exercise 4.1.6:
1. Decompose the following fractions into simple elements in R[X ], and in

C[X ].

F0 (X) =
X2 +X +1

(X −1)3 ,

F1 (X) =
3X3 +X2 +X +1

X2 −3X +2
,

F2 (X) =
2X4 +1

X (X −1)3 (X2 +X +1)
,

F3 (X) =
X2 +1
X4 +1

. (TP)
2. Calculate the following integral∫ 4

3
F1 (X)dx.

Solution:
1. Decompose F0 (X) into simple elements in R[X ], and in C[X ].

F0 (X) =
X2 +X +1

(X −1)3 .

(1st). Decomposition: Determine a,b, and c of the real numbers such that

X2 +X +1

(X −1)3 =
a

X −1
+

b

(X −1)2 +
c

(X −1)3
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then
(X −1)3 F0 (X) = X2 +X +1

= a(X −1)2 +b(X −1)+ c For X=1
=⇒ c = 3,

and

X2 +X +1

(X −1)3 =
aX2 +(b−2a)X +a−b+3

(X −1)3 ⇒
{

a = 1
b = 3 .

Finally,

X2 +X +1

(X −1)3 =
1

X −1
+

3

(X −1)2 +
3

(X −1)3 .

2. Decompose F1 (X) into simple elements in R[X ], and in C[X ].

F1 (X) =
3X3 +X2 +X +1

X2 −3X +2
.

(1st) . Determination of the integer part: by using Euclidean division of 3X3 +
X2 +X +1 by X2 −3X +2, we obtain

3X3 +X2 +X +1
X2 −3X +2

= 2X +7+
16X −13

X2 −3X +2
.

(
2nd) . Denominator factorization: Factor the polynomial X2 −3X +2 in R

X2 −3X +2 = (X −1)(X −2)(
3rd). Decomposition: Determine a and b of the real numbers such that

16X −13
X2 −3X +2

=
a

X −1
+

b
X −2

.

Multiply both sides of the equality by (X −1), we have

16X −13
X −2

= a+
b(X −1)

X −2
,

for X = 1, we obtain a =−3. And also,

(X −2)
16X −13

X2 −3X +2
=

16X −13
X −1

=
a(X −2)

X −1
+b,

for X = 2, we obtain b = 19. Finally,

3X3 +X2 +X +1
X2 −3X +2

= 2X +7+
−3

X −1
+

19
X −2

. (4.2)

3. Decompose F2 (X) into simple elements in R[X ], and in C[X ].



4.1 Exercises solved 59

(a) In R[X ] :

F2 (X) =
2X4 +1

X (X −1)3 (X2 +X +1)
.

(1st) Decomposition: Determine a,c and b of the real numbers such that

F2 (X) =
a
X
+

b

(X −1)3 +
cX +d

X2 +X +1
,

then

XF2 (X) =
2X4 +1

(X −1)3 (X2 +X +1)

= a+
bX

(X −1)3 +
cX2 +dX

X2 +X +1
For X=0
=⇒ a = 1,

(X −1)3 F2 (X) =
2X4 +1

X (X2 +X +1)

=
(X −1)3

X
+b+

(cX +d)(X −1)3

X2 +X +1
For X=1
=⇒ b = 1,(

X2 +X +1
)

F2 (X) =
2X4 +1

X (X −1)3

=

(
X2 +X +1

)
X

+

(
X2 +X +1

)
(X −1)3 + cX +d For X=−1

=⇒
and X=2

{
c = 3

2 ,
d = 3

.

Finally,

F2 (X) =
1
X
+

1

(X −1)3 +
3
2X +3

(X2 +X +1)
.

(b) In C[X ] : We have

X2 +X +1 =

(
X +

1+ i
√

3
2

)(
X +

1− i
√

3
2

)
.

(1st) Decomposition: Determine d,and e of the real numbers such that
3
2X +3

X2 +X +1
=

d

X + 1+i
√

3
2

+
e

X + 1−i
√

3
2

=
(d + e)X + 1

2

(
d + e+(e−d)i

√
3
)

X2 +X +1
,

By identification we find

e+d =
3
2
, and e−d =

−3
√

3
2

i,
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then

d =
3
4

(
1+ i

√
3
)
, and e =

3
4

(
1− i

√
3
)
.

We conclude,

3
2X +3

X2 +X +1
=

3
(
1+ i

√
3
)

4X +2(1+ i
√

3)
+

3
(
1− i

√
3
)

4X +2(1− i
√

3)
.

Finally

F2 (X) =
1
X
+

1

(X −1)3 +
3
(
1+ i

√
3
)

4X +2(1+ i
√

3)
+

3
(
1− i

√
3
)

4X +2(1− i
√

3)
.

4. Calculate the integral∫ 3

2
F1 (X)dx =

∫ 4

3

3X3 +X2 +X +1
X2 −3X +2

dx,

according to (4.2) we find∫ 4

3
F1 (X)dx =

∫ 4

3

(
2X +7+

−3
X −1

+
19

X −2

)
dx

=
[
X2 +7X −3ln(X −1)+19ln(X −2)

]4
3

= 14+ ln
(

222

27

)
.

4.1.1 Additional exercises

Exercise 4.1.7: Let A and B be t wo polynomails such that:

A(X) = X5 +X4 −X3 −3X2 +2X +2 and B(X) = X3 +1.

1. Show that (X +1) divides A(X).
2. Factor A and B on R[X ], on C[X ].
3. Determine the D = gcd(A,B)

Exercise 4.1.8: Are the following polynomials irreducible in R[X ] or in C[X ]?

P(X) = X6 +1, Q(X) = X12 −1, R(X) = X8 −X4 +1

Factor these polynomials on R[X ], on C[X ].
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Exercise 4.1.9: For n ∈ N, show that the polynomial

P(X) = nXn+1 − (n+1)Xn,

is divisible by (1−X)2 .

Exercise 4.1.10: (gcd of polynomials)
• Determine the D = gcd the following polynomials:

1. A = X5 +X3 +X +1 and B = X4 +X2 +1,
2. A = X6 +X4 −X2 −1 and B = X3 −4X +1.

• Find U and V of the previous D, such that AU +BV = D.
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4.2 Final exam.
4.2.1 Exam 1.

Exercise 4.2.1: (05pts) Let p,q and r be three propositions mathematics.
1. Determine all cases for which the following proposition is false, and find its

negation.

(p ⇒ q)⇒ (r ⇒ p) .

2. Choose the proof method, and prove the following statement:

∀n ∈ Z,n ̸= 0 ⇒ 2n +3 ̸= 4.

Solution:
Let p,q and r be three propositions mathematics.

• Find all cases for which the proposition (p ⇒ q) ⇒ (r ⇒ p) is false, using the
associated truth table

p q r p ⇒ q r ⇒ p (p ⇒ q)⇒ (r ⇒ p)
1 1 1 1 1 1
1 1 0 1 1 1
1 0 1 0 1 1
1 0 0 0 1 1
0 1 1 1 0 0
0 1 0 1 1 1
0 0 1 1 0 0
0 0 0 1 1 1

So the proposition (p ⇒ q)⇒ (r ⇒ p) is false in both cases:
– 1st : p is false, q is false and r is true. (01)
– 2nd : p is false, q is true and r is true. (01)

• Negation of the previous statement.
(p ⇒ q)⇒ (r ⇒ p) ⇔ (p ⇒ q)∧ (r ⇒ p)

⇔ (p ⇒ q)∧ (r∧ p) .(01)
• The appropriate proof method and Prove

– The appropriate proof method is contrapositive proof.(0.5)
– Prove : (01.5)

∀n ∈ Z,n ̸= 0 ⇒ 2n +3 ̸= 4.

Using contrapositive proof, we prove

(2n +3 = 4)⇒∃n ∈ Z,n = 0.

Then, let n ∈ Z
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(2n +3 = 4) ⇒ 2n = 1
⇒ ln2n = ln1
⇒ n ln2 = 0
⇒ n = 0.

Finally

∀n ∈ Z,n ̸= 0 ⇒ 2n +3 ̸= 4.

Exercise 4.2.2: (04pts)
Let the application f be defined by

f : N×R−{−1} → R
(n,x) 7−→ f (n,x) = n

x+1 .

1. Calculate f ({1,2}× [0,2]) and f−1 ({1}) .
2. Study the injectivity and the surjectivity of f .

Solution:
• Calculate f ({1,2}× [0,2]) et f−1 ({1}) .

1. f ({1,2}× [0,2]). (01)
f ({1,2}× [0,2]) = { f (n,x) : (n,x) ∈ {1,2}× [0,2]}

= { f (1,x) : x ∈ [0,2]}∪{ f (2,x) : x ∈ [0,2]} ,
so for n ∈ {1,2}

x ∈ [0,2]⇒ n
x+1

∈
[n

3
,n
]
.

Then

f ({1,2}× [0,2]) =
[

1
3
,1
]
∪
[

2
3
,2
]
=

[
1
3
,2
]
.

2. f−1 ({1}). (01)

f−1 ({1}) =

{
(n,x) :

n
x+1

= 1
}

= {(n,x) : x = n−1}
= {(n,n−1) : n ∈ N∗} .

• Study the injectivity and surjectivity of f .
1. Injectivity: we have for example f (0,0) = f (0,1), but (0,0) ̸= (0,1), then

f is not injective. (01)
2. Surjectivity: let y ∈ R, then

(a) If y = 0, then ∃n = 0, and x ∈ R\{−1} such that 0 = 0
x+1 .

(b) If y ̸= 0, then ∃n ∈N∗ and ∃x ∈R, for example n = |[y]|+1 ∈N∗, and
x = |[y]|+1

y −1 ∈ R\{−1} such that y = n
x+1 .

where [.] : is the integer part function. Then f is surjective. (01)
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Exercise 4.2.3: (04 pts)
1. Let (G,⋆) be a commutative group and e its neutral element. Show that the

set

H= {a ∈G: a⋆a⋆a = a} ,

is a subgroup of (G,⋆).
2. Solve in H the following equation x2024 = e, where xn = x⋆ x⋆ ... ⋆ x︸ ︷︷ ︸

n times

.

Solution:
I Show that the set H= {a ∈G: a⋆a = a} is a subgroup of (G,⋆).
i) H ̸=∅, because e⋆ e⋆ e = e⋆ e = e ⇒ e ∈H. (0.5)
2i) Let a ∈H : a−1 ?

∈H, then let a ∈G :

a−1 ⋆a−1 ⋆a−1 = (a⋆a)−1 ⋆a−1 = (a⋆a⋆a)−1 = a−1.

So a−1 ∈H. (01)
3i) Let a,b ∈H : a⋆b

?
∈H, then

a⋆b⋆a⋆b⋆a⋆b ⋆: commutative
= a⋆a⋆b⋆a⋆b⋆b

= a⋆a⋆a⋆b⋆b⋆b = a⋆⋆b.

So a⋆b ∈H, and finally H is a subgroup of (G,⋆) . (01)
II Solve in H the following equation x2024 = e, we have

x2024 = x⋆ x⋆ ... ⋆ x︸ ︷︷ ︸
2024 times

= x⋆ ... ⋆ x︸ ︷︷ ︸⋆
674×3 times

x⋆ x = x⋆ ... ⋆ x︸ ︷︷ ︸⋆
675 times

x

= x⋆ ... ⋆ x︸ ︷︷ ︸
225×3 times

⋆ x = x⋆ ... ⋆ x︸ ︷︷ ︸
225 times

⋆ x = x⋆ ... ⋆ x︸ ︷︷ ︸
75×3 times

⋆ x = x⋆ ... ⋆ x︸ ︷︷ ︸
75 times

⋆ x

= x⋆ ... ⋆ x︸ ︷︷ ︸
25×3 times

⋆ x = x⋆ ... ⋆ x︸ ︷︷ ︸
25 times

⋆ x = x⋆ ... ⋆ x︸ ︷︷ ︸
8×3 times

⋆ x⋆ x

= x⋆ ... ⋆ x⋆ x︸ ︷︷ ︸
9 times

⋆ x = x⋆ x⋆ x⋆ x = x⋆ x.

Then

x⋆ x = e ⇒ x = x−1,

hence the set of solutions is S=
{

x ∈H: x = x−1} . (01.5)
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Exercise 4.2.4: (07 pts)
• What is the value of a such that the polynomail

Pa = X4 +X2 +a

does not accept roots in R. In this case what do you conclude?
• Factor the polynomail P1 in R[X ].
• Find the D = gcd(P1,Q), where Q = X5 +X4 +2X3 +X2 +X .

1. Deduce the factorization of Q in R[X ].
2. Find A and B of the previous D, such that AP1 +BQ = D.
3. Decompose the fraction Q

P1
into simple elements in R[X ].

Solution:
• – The value of a such that the polynomail Pa does not accept the roots in R.

We consider the function

X 7−→ Pa(X) = X4 +X2 +a.

So, we have

P′
a(X) = 4X3 +2X = 2X

(
2X2 +1

)
,

then,

P′
a(X) = 0 =⇒ X = 0,

since, Pa(0) = a, then graph of P(X) pass by the axis (Ox) if a ≤ 0.
Then the polynomail Pa does not accept the roots in R if a ∈ ]0,+∞[ . (01)
xP′

a(x)Pa∞0∞∞Pa(0)∞
– Conclusion: The polynomail Pa does not accept the roots in R, but it is of

degree 4, so it is the product of polynomials of degree 2, (0.5)
• Factor the polynomail P1 in R[X ] : we have a = 1 so P it is the product of poly-

nomials of degree 2. Then (01)
X4 +X2 +1 =

(
X2 +1

)2 −X2

=
(
X2 +X +1

)(
X2 −X +1

)
.

• Find the D = gcd(P1,Q), where Q = X5 +X4 +2X3 +X2 +X . Using Euclidean
division we find

X5 +X4 +2X3 +X2 +X X4 +X2 +1
X +1−X5 −X3 −X

X4 +X3 +X2

−X4 −X2 −1
X3 −1
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X4 +X2 +1 X3 −1
X−X4 +X

X2 +X +1

X3 −1 X2 +X +1
X −1−X3 −X2 −X

−X2 −X −1
X2 +X +1

0

then D = gcd(P1,Q) = X2 +X +1. (02)
1. Deduce the factorization of Q in R[X ]. Factorization of Q in R[X ], from the

above, we get Q divisible byD = X2 +X +1, then

X5 +X4 +2X3 +X2 +X X2 +X +1
X3 +X−X5 −X4 −X3

X3 +X2 +X
−X3 −X2 −X

0

And from it we find (0.5)

X5 +X4 +2X3 +X2 +X = X(X2 +1)(X2 +X +1).

2. Find A and B of the previous D, such that AP1 +BQ = D: According to the
euclidean division, we obtain

Q = (X +1)P1 +(X3 −1), and P1 = X(X3 −1)+D.

Then

D = P1 −X(Q− (X +1)P1) = (−X)Q+(X2 +X +1)P1.

So (01)

A = (X2 +X +1),B = (−X).

3. Decompose the fraction Q
P1

into simple elements in R[X ].

Q
P1

=
(X3 +X)D

(X2 −X +1)D
=

X3 +X
X2 −X +1



4.2 Final exam. 67

and

X3 +X X2 −X +1
X +1−X3 +X2 −X

X2

−X2 +X −1
X −1

Finally (01)

Q
P1

=
X3 +X

X2 −X +1
= X +1+

X −1
X2 −X +1

.

4.2.2 Exam 2.

Exercise 4.2.5: (04pts)
1. Let A and B two parts of a set E, show that: (A∩B)∪Bc = A∪Bc.
2. By contrapositive proof, show that: If (n2 − 1) is not divisible by 8, so n is

even.

Solution:
1. Show that: (A∩B)∪Bc = A∪Bc. (02)

Let x ∈ (A∩B)∪Bc ⇐⇒ x ∈ (A∩B)∨ x ∈ Bc

⇐⇒ (x ∈ A∧ x ∈ B)∨ (x ∈ Bc)

⇐⇒ (x ∈ A∨ x ∈ Bc)∧ (x ∈ B∨ x ∈ Bc)

⇐⇒ (x ∈ A∪Bc)∧ (x ∈ B∪Bc)

⇐⇒ (x ∈ A∪Bc)∧ (x ∈ E)
⇐⇒ x ∈ (A∪Bc)∩E
⇐⇒ x ∈ A∪Bc.

2. By contrapositive proof, show that: If (n2 −1) is not divisible by 8, so n is even.
(02)
Let n be odd then ∃k ∈ Z such that n = 2k+1, so

n2 = 4k2 +4k+1 ⇔ n2 −1 = 4k(k+1)

it suffices to show that k(k+1) is even, we have two cases:
If k is even then k+1 is odd so the product of an even number and an odd number
is even.
If k is odd, then k+1 is even so the product is even it is the same reasoning,
(you should know that the product of two consecutive numbers is always even).
Thus k(k+1) is even ∃k′ ∈ Z : k(k+1) = 2k′, hence

n2 −1 = 8k′

So n2 −1 is divisible by 8.
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Exercise 4.2.6: (06pts) Let the composition low ⋆ be defined in E=R−
{1

2

}
by

⋆ : E×E −→ E
(a,b) 7−→ a⋆b = a+b−2ab .

1. Show that ⋆ is an internal composition law.
2. Show that (E,⋆) is a commutative group.
3. Show that H=

{
0,2, 2

3

}
is a subgroup of E .

Solution:
1. Show that ⋆ is an internal law in E (01),

indeed: ∀a,b ∈ E, a+b−2ab
??
∈ E. (that’s to say ∀a,b ∈ E : a+b−2ab ̸= 1

2).

we show by the absurd we suppose that a+b−2ab = 1
2 , knowing that a ̸= 1

2 , and
b ̸= 1

2

a+b−2ab =
1
2
⇒ (2a−1)

(
b− 1

2

)
= 0

⇒ a =
1
2

or b =
1
2
.

contradiction, so a+b−2ab = 1
2 is false, that is to say a+b−2ab ̸= 1

2 , and from
it a⋆b ∈ E, ⋆ is an internal law.

2. Show that (E,⋆) is a commutative group.
(a) Commutativity (0.5): Let a,b ∈E, then a⋆b = a+b−2ab = b+a−2ba =

b⋆a, so ⋆ is a commutative.
(b) Associativity (01): Let ∀a,b,c ∈ E, then

(a⋆b)⋆ c = a⋆b+ c−2(a⋆b)c
= b+a−2ab+ c−2(b+a−2ba)c
= b+a+ c−2ab−2bc−2ac+4bac

and
a⋆ (b⋆ c) = a⋆ (b+ c−2bc)

= a+(b+ c−2bc)−2a(b+ c−2bc)
= b+a+ c−2bc−2ab−2ac+4bac
= (a⋆b)⋆ c

so ⋆ is a associative.

(c) Identity element (01):
?
∃e ∈ E, ∀a ∈ E : a⋆ e = e⋆a = a,

a⋆ e = a =⇒ a+ e−2ea = a
=⇒ e(1−2a) = 0
=⇒ e = 0.

so the identity element is e = 0.

(d) Inverse element (01) : ∀a ∈ E,
?
∃a−1 ∈ E, : a⋆a−1 = a−1 ⋆a = 0,

a⋆a−1 = 0 =⇒ a+a−1 −2aa−1 = 0
=⇒ a−1 =

a
2a−1
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so for all a in E, there exist an inverse element a−1 = a
2a−1 ∈ E.

Finailly (E,⋆) is a commutative group.
3. Show that H=

{
0,2, 2

3

}
is a subgroup of E.

(a) e = 0 ∈H. (0.5)
(b) (0.5) 

0⋆2 = 2 ∈H
0⋆ 2

3 = 2
3 ∈H

2⋆ 2
3 = 0 ∈H

(c) (0.5) 
0−1 = 0 ∈H(2
3

)−1
= 2 ∈H

(2)−1 = 2
3 ∈H

So H=
{

0,2, 2
3

}
is a subgroup of E.

Exercise 4.2.7: (04pts)
Let the application g be defined by

g : N×N → N∪{−3,−2,−1}
(n,m) 7−→ g(n,m) = n+m−3.

1. Calculate g({(1,2) ,(2,3)}) and g−1 ({2}) .
2. Study the injectivity and the surjectivity of g.

Solution:
• g({(1,2) ,(2,3)}) and g−1 ({2}) .

1. g({(1,2) ,(2,3)}). (01)
g({(1,2) ,(2,3)}) = {g(n,m) : (n,m) ∈ {(1,2) ,(2,3)}}

= {g(1,2),g(2,3)}
= {0,2}

2. g−1 ({2}). (01)
g−1 ({2}) = {(n,m) : n+m−3 = 2}

= {(n,m) : m+n = 5,n,m ∈ N}
= {(0,5) ,(1,4) ,(2,3) ,(3,2) ,(4,1) ,(5,0)}

• Study the injectivity and surjectivity of g.
1. Injectivity: we have for example g(0,5) = g(1,4), but (0,5) ̸= (1,4), then

g is not injective. (01)
2. Surjectivity: we have ∀s ∈ N∪{−3,−2,−1} , ∃(n,m) ∈ N : n+m− 3 =

s.(For example n = 0,m = s+3)
Then g is surjective. (01)
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Exercise 4.2.8: (06pts)
Let P and Q be two polynomials such that:
P(X) = X4 +2X3 −X −2, and Q(X) = X5 +2X4 −X3 −2X2 +X +2.

1. Find the D = gcd(P,Q).
2. Find the polynomials A and B such that D = AP+BQ.
3. Factor the polynomails P and Q into a product of irreducible factors in R[X ].

Solution:
1. Find the D = gcd(P,Q).

(a) 1st : We divide Q by P, we obtain

R1(X) =−X3 −X2 +3X +2, and Q1(X) = X .

(b) 2nd: We divide P by R1, we obtain

R2(X) = 2X2 +4X , and Q2(X) =−(X +1) .

(c) 3rd: We divide R1 by R2, we obtain

R3(X) = X +2, and Q3(X) =−1
2
(X −1).

(d) 4th: We divide R2 by R3, we obtain

R4(X) = 0, and Q4(X) = 2X .

So D = gcd(P,Q) = R3(X) = X +2.(02)
2. Find the polynomials A and B such that D = AP+BQ.

we have
Q = Q1P+R1
P = R1Q2 +R2
R1 = R2Q3 +D

=⇒


R1 = Q−Q1P
R2 = P−R1Q2
D = R1 −R2Q3

=⇒ D = (1+Q2Q3)Q+(−Q1 −Q3 −Q1Q2Q3)P
so

A = −Q1 −Q3 −Q1Q2Q3 =−1
2
(
X3 +1

)
.(0.5)

B = 1+Q2Q3 =
1
2
(
X2 +1

)
.(0.5)

3. Factor the polynomails P and Q into a product of irreducible factors in R[X ].
(a) (01.5)

Q(X) = X5 +2X4 −X3 −2X2 +X +2
= (X +2)

(
X4 −X2 +1

)
= (X +2)

(
X4 +2X2 +1−3X2)

= (X +2)
((

X2 +1
)2 −

(√
3X
)2
)

= (X +2)
(

X2 +
√

3X +1
)(

X2 −
√

3X +1
)
.
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(b) (01.5)
P(X) = X4 +2X3 −X −2

= (X +2)
(
X3 −1

)
= (X +2)(X −1)

(
X2 +X +1

)
.

4.2.3 Exam 3.

Exercise 4.2.9: (08pts) Let the composition low ⊗ be defined in G= R−
{−1

3

}
by

⊗ : G×G −→ G
(x,y) 7−→ x⊗y = x+ y+3xy .

1. Show that ⊗ is an internal composition law.
2. Show that (G,⊗) is a commutative group.
3. Show that H=

{
0,1, −1

4

}
is a subgroup of G .

Solution:
1. Show that ⊗ is an internal law in G (01.5),

indeed: ∀a,b ∈ E, a+b+3ab
??
∈G. (that’s to say ∀a,b ∈G : a+b+3ab ̸= −1

3 ).

we show by the absurd we suppose that a+b+3ab = −1
3 , knowing that a ̸= −1

3 ,
and b ̸= −1

3

a+b+3ab =
−1
3

⇒ (3a+1)
(

b+
1
3

)
= 0

⇒ a =
−1
3

or b =
−1
3
.

contradiction, so a+b+3ab = −1
3 is false, that is to say a+b+3ab ̸= −1

3 , and
from it a⊗b ∈G, ⊗ is an internal law.

2. Show that (G,⊗) is a commutative group.
(a) Commutativity (01): Let a,b ∈G, then a⊗b = a+b+3ab = b+a+3ba =

b⊗a, so ⊗ is a commutative.
(b) Associativity (02): Let ∀a,b,c ∈G, then

(a⊗b)⊗c = a⊗b+ c+3(a⊗b)c
= b+a+3ab+ c+3(b+a+3ba)c
= b+a+ c+3ab+3bc+3ac+9bac

and
a⊗(b⊗c) = a⊗(b+ c+3bc)

= a+(b+ c+3bc)+3a(b+ c+3bc)
= b+a+ c+3bc+3ab+3ac+9bac
= (a⊗b)⊗c

so ⊗ is a associative.
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(c) Identity element (01):
?
∃e ∈G, ∀a ∈G : a⊗e = e⊗a = a,

a⊗e = a =⇒ a+ e+3ea = a
=⇒ e(1+3a) = 0
=⇒ e = 0.

so the identity element is e = 0.

(d) Inverse element (01) : ∀a ∈G,
?
∃a−1 ∈ E, : a⊗a−1 = a−1⊗a = 0,

a⊗a−1 = 0 =⇒ a+a−1 +3aa−1 = 0

=⇒ a−1 =
−a

3a+1
so for all a in G, there exist an inverse element a−1 = −a

3a+1 ∈G.
Finailly (G,⊗) is a commutative group.

3. Show that H=
{

0,1, −1
4

}
is a subgroup of G.

(a) e = 0 ∈H. (0.5)
(b) (0.5) 

0⊗1 = 1 ∈H
0⊗
(−1

4

)
= −1

4 ∈H
1⊗
(−1

4

)
= 0 ∈H

(c) (0.5) 
0−1 = 0 ∈H

(1)−1 = −1
4 ∈H(−1

4

)−1
= 1 ∈H

So H=
{

0,1, −1
4

}
is a subgroup of G.

Exercise 4.2.10: (06pts)
Let the application h be defined by

h : N×N×N → N∪{−1}
(n,m, p) 7−→ h(n,m, p) = n+m+ p−1.

1. Calculate h({(0,1,2) ,(2,0,3)}) and h−1 ({1}) .
2. Study the injectivity and the surjectivity of h.

Solution:
• h({(0,1,2) ,(2,0,3)}) and h−1 ({1}) .

1. h({(0,1,2) ,(2,0,3)}). (01)
h({(0,1,2) ,(2,0,3)}) = {h(n,m, p) : (n,m, p) ∈ {(0,1,2) ,(2,0,3)}}

= {h(0,1,2),h(2,0,3)}
= {2,4}
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2. h−1 ({1}). (01)
h−1 ({1}) = {(n,m, p) : n+m+ p−1 = 1}

= {(n,m, p) : m+n+ p = 2,n,m ∈ N}
= {(0,0,2) ,(0,2,0) ,(2,0,0) ,(1,1,0) ,(1,0,1) ,(0,1,1)}

• Study the injectivity and surjectivity of h.
1. Injectivity: we have for example h(0,0,2)= h(2,0,0), but (0,0,2) ̸=(2,0,0),

then h is not injective. (01)
2. Surjectivity: we have ∀s ∈N∪{−1} , ∃(n,m, p) ∈N×N×N : n+m+ p−

1 = s.(For example n = 0,m = s+1, p = 0)
Then h is surjective. (01)

Exercise 4.2.11: (06pts)
Let A and B be two polynomials such that:
A = X4 +2X3 −X −2, and B = X6 +2X5 −X4 −2X3 +X2 +2X .

1. Find the D = gcd(A,B).
2. Factor the polynomails A and B into a product of irreducible factors in R[X ].

Solution:
1. Find the D = gcd(A,B).

(a) 1st : We divide B by A, we obtain

R1(X) = X3 +3X2 +X −2, and Q1(X) = X2 −1.

(b) 2nd: We divide P by R1, we obtain

R2(X) = 2X2 +2X −4, and Q2(X) = X −1.

(c) 3rd: We divide R1 by R2, we obtain

R3(X) = X +2, and Q3(X) =
1
2

X +1.

(d) 4th: We divide R2 by R3, we obtain

R4(X) = 0, and Q4(X) = 2X .

So D = gcd(A,B) = R3(X) = X +2.(03)
2. Factor the polynomails A and B into a product of irreducible factors in R[X ].

(a) (01.5)
B(X) = X6 +2X5 −X4 −2X3 +X2 +2X

= X (X +2)
(
X4 −X2 +1

)
= X (X +2)

(
X4 +2X2 +1−3X2)

= X (X +2)
((

X2 +1
)2 −

(√
3X
)2
)

= X (X +2)
(

X2 +
√

3X +1
)(

X2 −
√

3X +1
)
.
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(b) (01.5)
A(X) = X4 +2X3 −X −2

= (X +2)
(
X3 −1

)
= (X +2)(X −1)

(
X2 +X +1

)
.

4.2.4 Exam 4.

Exercise 4.2.12: (06pts)
1. Let p and r be two propositions mathematics, show that the following equiv-

alence:

(p ⇒ r)⇔ (p ⇒ p∧ r) .

2. Choose the proof method, and prove the following statement:

∀n,m ∈ Z,n ̸= m ⇒ 2n +2m ̸= 32.

Exercise 4.2.13: (06pts)
Let the application f be defined by

f : R → Z×R
x 7−→ f (x) = ([x] ,x) .

where [.]: is the integer part function.
1. Calculate f (

{11
5 ,

−11
3

}
) and f−1 ({(0,3)} .

2. Study the injectivity and the surjectivity of f .

Exercise 4.2.14: (08pts)

1. Let P and Q be two polynomails

P = X4 −X2 +1,

Q = X5 +
√

3X4 +2X3 +
√

3X2 +X .

2. Factor the polynomail P in R[X ].
3. Find the D = gcd(P,Q), where

(a) Deduce the factorization of Q in R[X ].
(b) Decompose the fraction Q

P into simple elements in R[X ].
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