

Algebra I Courses

with Corrected Exercises

Dr. Hamid BEDDANI

Preface

This handout is a work, mainly intended for first year Electrical and Energy Engineering students, but also for all first year students in technological and scientific fields, we address the first year algebra program. The courses are presented in a very clear way with many examples which allows the student the best understanding of the program. At the end of each course, exercises with detailed solutions are offered.

Contents

1	Logic, Set and Applications	. 5
1.1	Propositional logic	5
1.1.1	Propositions (Assertions):	. 5
1.1.2	Quantifiers	. 8
1.1.3	Types of reasoning in mathematics	. 9
1.2	Set Language	10
1.2.1	concepts	10
1.2.2	Operations on sets	10
1.3	Applications	12
1.3.1	Concepts	12
1.3.2	Injections, surjections, bijections	13
1.3.3	Image and inverse image	15
1.3.4	Exercises	18
1.3.5	Additional exercises	24
2	Algebraic Structure	27
2.0.1	Internal composition law (I.C.L)	27
2.0.2	Group Structure	29
2.0.3	Ring Structure	31
2.0.4	Field Structure	32
2.1	Exercises	32
2.2	Additional exercises	36

4		
3	Rings of Polynomials	39
3.0.1		39
3.0.2	Operations on $\mathbb{K}[X]$	40
3.0.3	Polynomial Division	40
3.0.4	Reducibility	43
3.0.5	Greatest Common Divisor (g.c.d)	43
3.0.6	Factoring a polynomial into irreducible	45
4	Rational fractions	47
4.0.1	Roots and poles of a rational fraction	47
4.0.2	Decomposition into simple elements	47
4.0.3	Practical examples	49
4.0.4	Practical decomposition methods	52
4.1	Exercises solved	52
4.1.1	Additional exercises	60
4.2	Final exam.	62
4.2.1	Exam 1	62
4.2.2	Exam 2	67
4.2.3	Exam 3	71
4.2.4	Exam 4	74

1. Logic, Set and Applications

1.1 Propositional logic

1.1.1 Propositions (Assertions):

- In mathematics, the propositions are denoted by P, Q, R, \dots , these are propsitions that can be judged as true (we denote by 1 or *T*) or false (we denote by 0 or *F*).

Exemples 1.1 1) "All even integers are divisible by two" is a true proposition.
2) "4 is an odd number" is a false proposition.

Définition 1.1.1 0 and 1 are called truth values.

Logical connectors

\wedge	Conjunction	$P \wedge Q$	P and Q .
V	Disjunction	$P \lor Q$	<i>P</i> or <i>Q</i> .
—	Negation	\overline{P}	not P.
\implies	Implication (Conditional)	$P \Longrightarrow Q$	P implies Q
	Equivalence (Biconditional)	$P \longleftrightarrow O$	P if and only if (iff) Q .
\leftarrow	Equivalence (Biconditional)	$1 \rightarrow Q$	P is equivalent to Q .

Exemples 1.2 *P*: The sine function is not one-to-one (Injective).

Q: The square root function is one-to-one correspondence (Bijective).

R :The absolute value function is not onto (Surjective).

The following symbols represent the indicated propositions:

 \overline{R} : The absolute value function is onto.

 $\overline{P} \lor \overline{Q}$: The sine function is one-to-one, or the square root function is not one-to-one correspondence.

 $Q \Longrightarrow R$: If the square root function is one-to-one, then the absolute function is not onto.

 $R \iff P$: The absolute value function is not onto **if and only if** the sine function is not one-to-one.

 $P \wedge Q$: The sine function is not one-to-one, **and** the square root function is one-to-one correspondence.

Valuations and Truth Tables

Propositions have truth values, but propositional forms do not. This is because every propositional form represents any one of infinitely many propositions. However, once a propositional form is identified with a proposition, there should be a process by which the truth value of the proposition is associated with the propositional form. This is done with a rule v called a valuation. The input of v is a propositional form, and its output is T or F.

Suppose that P is a propositional variable. If P has been assigned a proposition,

$$v(P) = \begin{cases} 1 & \text{if } P & \text{is true} \\ 0 & \text{if } P & \text{is false} \end{cases}$$

For example, if P := 2 + 3 = 5, then v(P) = 1, and if P := 2 + 3 = 7, then v(P) = 0. Définition 1.1.2 Let *P* and *Q* be propositional forms.

The truth value of the negation of a proposition is the opposite of the truth value of that proposition,

$$v(\overline{P}) = \begin{cases} 0 & \text{if } P & \text{is true} & (\text{or if } v(P) = 1) \\ 1 & \text{if } P & \text{is false} & (\text{or if } v(P) = 0) \end{cases}$$

The conjunction is true when both of its conjuncts are true, and false otherwise.

$$v(P \land Q) = \begin{cases} 1 & \text{if } v(P) = 1 \text{ and } v(Q) = 1 \\ 0 & \text{if not (otherwise).} \end{cases}$$

The disjunction is true when at least one disjunct is true, and false otherwise.

$$v(P \lor Q) = \begin{cases} 0 & \text{if } v(P) = 0 \text{ and } v(Q) = 0\\ 1 & \text{if not (otherwise).} \end{cases}$$

The implication $(P \Longrightarrow Q)$, (it reads also "if P then Q") is false only if P is true and Q is false, otherwise it is true

$$v(P \Longrightarrow Q) = \begin{cases} 0 & \text{if } v(P) = 1 \text{ and } v(Q) = 0\\ 1 & \text{if not (otherwise).} \end{cases}$$

The equivalence is true if P and Q have the same truth values

$$v(P \iff Q)) = \begin{cases} 1 & \text{if } v(P) = v(Q) \\ 0 & \text{if not (otherwise).} \end{cases}$$

- The following truth table summarizes the above definition

Р	1	1	0	0
Q	1	0	1	0
\overline{P}	0	0	1	1
$P \wedge Q$	1	0	0	0
$P \lor Q$	1	1	1	0
$P \Longrightarrow Q$	1	0	1	1
$P \Longleftrightarrow Q$	1	0	0	1

Properties:

Let P, Q and R be three propositions. Using truth tables, we can proof that the following propositions are true:

1
$$[P \iff Q] \iff [\overline{P} \iff \overline{Q}]$$

2 $P \iff Q \iff (P \implies Q) \land (Q \implies P)$.
3 $[(P \implies Q) \land (Q \implies R)] \implies [P \implies R]$.
Distributive Laws
4 $P \land (Q \lor R) \iff (P \land Q) \lor (P \land R)$.(the distribution of \land on \lor),
5 $P \lor (Q \land R) \iff (P \lor Q) \land (P \lor R)$.(the distribution of \lor on \land),
De Morgan's Laws
6 $\overline{P \land Q} \iff \overline{P} \lor \overline{Q}$.
8 $\overline{P \lor Q} \iff \overline{P} \land \overline{Q}$.
9 $[\overline{P \implies Q}] \iff [P \land \overline{Q}]$.
Contrapositive Law
10 $P \implies Q \iff \overline{Q} \implies \overline{P}$.

Proof:

• Truth table associated of De Morgan's Laws

Р	Q	$P \wedge Q$	$\overline{P \wedge Q}$	\overline{P}	\overline{Q}	$\overline{P} \lor \overline{Q}$
1	1	1	0	0	0	0
1	0	0	1	0	1	1
0	1	0	1	1	0	1
0	0	0	1	1	1	1

We see that the logical propositions $(\overline{P \land Q})$ and $(\overline{P} \lor \overline{Q})$ have the same truth values, so they are equivalent. In the same way, we prove the other properties.

• Truth table associated of (9)

Р	1	1	0	0
Q	1	0	1	0
$P \Longrightarrow Q$	1	0	1	1
$P \Longrightarrow Q$	0	1	0	0
\overline{Q}	0	1	0	1
$P \wedge \overline{Q}$	0	1	0	0

We see that the logical propositions $(\overline{P \Longrightarrow Q})$ and $(P \land \overline{Q})$ have the same truth values, so they are equivalent

• Truth table associated of (3)

Р	1	1	1	1	0	0	0	0
Q	1	1	0	0	1	0	1	0
R	1	0	1	0	1	1	0	0
$P \Longrightarrow Q$	1	1	1	1	0	1	0	1
$Q \Longrightarrow R$	1	1	0	1	1	0	1	1
$P \Longrightarrow R$	1	1	1	1	0	0	1	1
$P \Longrightarrow Q \land Q \Longrightarrow R$	1	1	0	1	0	0	0	1
$[P \Longrightarrow Q \land Q \Longrightarrow R] \Longrightarrow [P \Longrightarrow R]$	1	1	1	1	1	1	1	1

We see that the logical propositions $[P \Longrightarrow Q \land Q \Longrightarrow R] \Longrightarrow [P \Longrightarrow R]$ always true. In the same way, we prove the other properties.

1.1.2 Quantifiers

In mathematics, there exists three logical quantifiers represented in the Table

Quantifiers	Proposition	Description
\forall • The universal quantifier " for all"	$\forall \mathbf{r} \in \mathbb{F} \cdot \mathbf{P}(\mathbf{r})$	is true if $P(x)$ is true
	$\forall x \in \mathbb{E} \cdot I(x)$	for all values of x in \mathbb{E}
\exists : The existential quantifier	$\exists \mathbf{r} \in \mathbb{F} \cdot \mathbf{P}(\mathbf{r})$	is true if $P(x)$ is true
"there exists" or "there exists at least one"	$ \exists x \in \mathbb{E} \cdot I(x) $	for at least one value of x in \mathbb{E}
		is true if there exists an x
□ . There exists a unique	$\exists l \in \mathbb{F} \cdot D(r)$	which is unique satisfying $P(x)$
	$\square: \in \mathbb{L} \cdot I(x)$	It is false if this x does not exist or
		if there exist several x satisfying $P(x)$

Exemples 1.3:

1. The quantified assertion « $\forall n \in \mathbb{N} : (4-n)n < 0$ » is false since there exists an element *n* in \mathbb{N} (We take n = 0, n = 1, n = 2, or n = 3)« (4-n)n < 0 ».

2. The quantified assertion « $\exists x \in \mathbb{R} : x^4 = 81$ » is true because there exists at least one element in \mathbb{R} which satisfies $x^4 = 81$. This is the case for the two real numbers -3 and 3..

- Following the expression "Who can do more, can do less", it is clear that the quantified assertion " $\exists x \in \mathbb{E} : P(x)$ " is automatically verified when the quantified assertion " $\forall x \in \mathbb{E} : P(x)$ » is. For example, the quantified assertion

« $\exists x \in [-3,3]$: $x^2 - 9 \le 0$ » is true since the quantified assertion « $\forall x \in [-3,3]$: $x^2 - 9 \le 0$ » is true.

Negation of a quantified proposition

- 1. $\forall x \in \mathbb{E} : P(x) \iff \exists x \in \mathbb{E} : \overline{P(x)}$
- 2. $\exists x \in \mathbb{E} : P(x) \iff \forall x \in \mathbb{E} : \overline{P(x)}$
- 3. $\exists ! x \in \mathbb{E} : P(x) \iff \exists x \in \mathbb{E} : P(x) \land x \text{ is unique} \iff \exists x \in \mathbb{E} : P(x) \lor x \text{ is unique}$

Important rules

- 1. $\forall x \in \mathbb{E}, \forall y \in \mathbb{F} : P(x, y) \iff \forall y \in \mathbb{F}, \forall x \in \mathbb{E} : P(x, y)$
- 2. $\exists x \in \mathbb{E}, \exists y \in \mathbb{F} : P(x, y) \iff \exists y \in \mathbb{F}, \exists x \in \mathbb{E} : P(x, y)$
- 3. $\forall x \in \mathbb{E}, \exists y \in \mathbb{F} : P(x, y) \Leftrightarrow \exists y \in \mathbb{F}, \forall x \in \mathbb{E} : P(x, y)$
- **Exemples 1.4**: Let U and V be two sequences
 - 1. $\forall n \in \mathbb{N} : U_n = V_n$. The negation of this proposition is $\exists n \in \mathbb{N} : U_n \neq V_n$.
 - 2. $\exists ! n \in \mathbb{N} : U_n = V_0$. The negation of this proposition is $\forall n \in \mathbb{N} : U_n \neq V_0 \text{ or } \exists (n_1, n_2) \in \mathbb{N}^2 : U_{n_1} = V_0 \land U_{n_2} = V_0$
 - 3. $\forall n \in \mathbb{N}, \exists m \in \mathbb{N} : U_n \leq V_m$. The negation of this proposition is: $\exists n \in \mathbb{N}, \forall m \in \mathbb{N} : U_n > V_m$

1.1.3 Types of reasoning in mathematics Proof by Contrapositive

Since, for two propositions *P* and *Q*, we have

$$[P \Longrightarrow Q] \Longleftrightarrow [\overline{Q} \Longrightarrow \overline{P}]$$

So, for show that $P \Longrightarrow Q$, It is enough to show that $\overline{Q} \Longrightarrow \overline{P}$.

Exemples 1.5: By using the proof by contrapositive, we prove the following proposition:

 $\forall n \in \mathbb{N} : n^2$ is even number $\Longrightarrow n$ is even number.

For that, proof that

 $\forall n \in \mathbb{N} : \overline{n \text{ is even number}} \Longrightarrow \overline{n^2 \text{ is even number}},$

In other words

n is odd number $\implies n^2$ is odd number.

Let $n \in \mathbb{N}$. Suppose *n* is odd number. This means that $\exists p \in \mathbb{N}$ such that n = 2p + 1. Then we have:

$$n^{2} = (2p+1)^{2} = 2(2p^{2}+2p) + 1 = 2q+1, q \in \mathbb{N}.$$

So n^2 is odd number. Then prove the proposition.

Proof by the absurd

For prove that a proposition P is true, we assume that \overline{P} is true and we deduce a contradiction.

- **Exemples 1.6**:
 - 1. Let $n \in \mathbb{N}^*$, proof that $n^2 + 1$ cannot be a square of $p \in \mathbb{N}$. By using the proof by the absurd, we assume that $\exists p \in \mathbb{N}$ such that $n^2 + 1 = p^2$. Which implies

$$p^2 - n^2 = 1 \iff (p - n)(p + n) = 1,$$

As $n \in \mathbb{N}^*$, then we must take p > 1 so that p - n is strictly positive (> 0). So

$$\left\{ \begin{array}{c} n \geq 1 \\ and \\ p-n \geq 1 \end{array} \right. \Longrightarrow p+n=p-n+2n \geq 1+2=3,$$

then

$$(p-n)(p+n) \ge 1 \times 3 > 1,$$

hence the contradiction.

Direct Proof:

To prove that $P \Longrightarrow Q$ is true, we assume that P is true and show that Q is true.

Exemples 1.7:

Proof that if $\forall a, b \in \mathbb{Q}$, then $a + b \in \mathbb{Q}$. Indeed, let $a, b \in \mathbb{Q}$, so :

$$\left\{\begin{array}{l}a=\frac{x}{y}, x\in\mathbb{Z}, y\in\mathbb{N}^*\\b=\frac{s}{t}, s\in\mathbb{Z}, t\in\mathbb{N}^*\end{array}\right\Longrightarrow a+b=\frac{xt+ys}{yt}\in\mathbb{Q}.$$

Hence the result.

1.2 Set Language

1.2.1 concepts

A set \mathbb{E} is a collection of objects called elements.

We call *CardE* the number of elements of the set \mathbb{E} .

We write $x \in \mathbb{E}$ to say that: *x* is an element of \mathbb{E} (or that *x* belongs to \mathbb{E}).

We write $x \notin \mathbb{E}$ to say that: *x* does not belong to \mathbb{E}

We write $\mathbb{F} \subset \mathbb{E}$ to say that: \mathbb{F} is a subset of \mathbb{E} , or \mathbb{F} is a part of \mathbb{E} or \mathbb{F} is included in \mathbb{E} .

We note by \emptyset the empty set which does not contain any element.

• Exemples 1.8 $\mathbb{E} = \{1, t, 5, m, \sqrt{7}\},\$

$$Card\mathbb{E} = 5, m \in \mathbb{E}, \{1,5\} \subset \mathbb{E}, s \notin \mathbb{E}, \{0,t\} \nsubseteq \mathbb{E}.$$

1.2.2 Operations on sets

Let \mathbb{E} and \mathbb{F} be two sets, then we present the possible operations between \mathbb{E} and \mathbb{F} .

$\mathbb{E} \subset \mathbb{F}$	\mathbb{E} is included in \mathbb{F}	$\mathbb{E} \subset \mathbb{F} \Longleftrightarrow \forall x : x \in \mathbb{E} \Longrightarrow x \in \mathbb{F}$
$\mathbb{E} = \mathbb{F}$	\mathbb{E} and \mathbb{F} are two equal sets	$\mathbb{E} = \mathbb{F} \Longleftrightarrow (\mathbb{E} \subset \mathbb{F}) \land (\mathbb{F} \subset \mathbb{E})$
$\mathbb{E} \cup \mathbb{F}$	The union of $\mathbb E$ and $\mathbb F$	$x \in (\mathbb{E} \cup \mathbb{F}) \Leftrightarrow (x \in \mathbb{E}) \lor (x \in \mathbb{F}),$ The set that contains all the elements of \mathbb{E} and \mathbb{F}
$\mathbb{E}\cap\mathbb{F}$	The intersection of $\mathbb E$ and $\mathbb F$	$x \in (\mathbb{E} \cap \mathbb{F}) \Leftrightarrow (x \in \mathbb{E}) \land (x \in \mathbb{F}),$ the set of elements which are both in \mathbb{E} and in \mathbb{F}
$ \begin{array}{c} \mathbb{E} \backslash \mathbb{F} = \mathbb{E} - \mathbb{F} \\ (\mathbb{E} \text{ minus } \mathbb{F}) \end{array} \end{array} $	The difference between $\mathbb E$ and $\mathbb F$	$x \in (\mathbb{E} - \mathbb{F}) \Leftrightarrow (x \in \mathbb{E}) \land (x \notin \mathbb{F}),$ the set of elements of \mathbb{E} which are not in <i>F</i>
$egin{array}{c} A \subset \mathbb{E}, \ A^c = C^A_\mathbb{E} = \overline{A} \end{array}$	The complement of A in \mathbb{E}	$A^c = \mathbb{E} \setminus A = \{x : x \in \mathbb{E} \land x \notin A\}$
$\mathbb{E} riangle \mathbb{F}$	The symmetrical difference between $\mathbb E$ and $\mathbb F$	$\mathbb{E} \triangle \mathbb{F} = (\mathbb{E} \backslash \mathbb{F}) \cup (\mathbb{F} \backslash \mathbb{E}) = (\mathbb{E} \cup \mathbb{F}) - (\mathbb{F} \cap \mathbb{E}).$

Properties:

Let A, B and C be parts of a set \mathbb{E} , then:

- $\emptyset \cup A = A$.
- $\varnothing \cap A = \varnothing$.
- $\mathbb{E} \cap A = A$.
- $A \cup \mathbb{E} = \mathbb{E}$.
- $A \subset B \Longrightarrow A \cap B = A$, and $A \cup B = B$.
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, (The distribution of \cap on \cup).
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$, (the distribution of \cup on \cap).
- $(A \cup B)^c = A^c \cap B^c$.
- $(A \cap B)^c = A^c \cup B^c$.
- $A^c \cap A = \emptyset$, and $A^c \cup A = \mathbb{E}$.
- $\varnothing \subset A, \forall A \subset \mathbb{E}.$

Set of parts:

 \mathbb{E} is a set, we denote $\mathscr{P}(\mathbb{E})$ the set which contains all the parts of \mathbb{E} and we call it set of parts of \mathbb{E} .

 $\mathscr{P}(\mathbb{E}) = \{A, A \subset \mathbb{E}\}.$

If $Card\mathbb{E} = n$, then $Card \mathscr{P}(\mathbb{E}) = 2^n$.

Cartesian product

Let \mathbb{E} and \mathbb{F} be two sets, the cartesian product, denoted $\mathbb{E} \times \mathbb{F}$, is the set of pairs (x, y) where $x \in \mathbb{E}$ and $y \in \mathbb{F}$, that is to say:

$$\mathbb{E} \times \mathbb{F} = \{ (x, y), x \in \mathbb{E}, y \in \mathbb{F} \}.$$

Examples: Let $A = \{1, 2, 3, 4\}$ and $B = \{4, 5\}$, then $A \cap B = \{4\}$, $A \cup B = \{1, 2, 3, 4, 5\}$, $A \setminus B = A - B = \{1, 2\}$, $C_B^A = \{5\}$ $A \times B = \{(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5), (4, 4), (4, 5)\}$.

1.3 Applications

1.3.1 Concepts

1- An application (map) $f : \mathbb{E} \to \mathbb{F}$ is a relation between a set \mathbb{E} and a set \mathbb{F} for which each element $x \in \mathbb{E}$ has a unique image $f(x) \in \mathbb{F}$. That is to say:

 $\forall x \in \mathbb{E}, \exists ! y \in \mathbb{F} : y = f(x).$

- \mathbb{E} is called the starting set of the map.
- \mathbb{F} is called the arrival set of the map.
- $(x, f(x)) \in \Gamma$, Γ is called the graph of the map.
- *y* is called image of *x* by the map.
- *x* is an antecedent of *y* by the map.

Figure 1.1: Application

• Notation:

$$\begin{array}{rccc} f: & \mathbb{E} & \longrightarrow & \mathbb{F} \\ & x & \longmapsto & y = f(x) \end{array}$$

2- **Equality**: Let $f : \mathbb{E} \to \mathbb{F}$ and $g : \mathbb{E} \to \mathbb{F}$, we say that these two applications are equal if and only if (iff)

 $\forall x \in \mathbb{E}, : g(x) = f(x).$

3- Composition of applications: Let $f : \mathbb{E} \to \mathbb{F}$ and $g : \mathbb{F} \to \mathbb{G}$, then

$$x \in \mathbb{E} \xrightarrow{f} f(x) \in \mathbb{F} \xrightarrow{g} g[f(x)] \in \mathbb{G}$$

4- **Restriction, Extension:** Let $f : A \to \mathbb{F}$ and $g : B \to \mathbb{F}$. if $A \subset B$ and if, for all $x \in A$, we have f(x) = g(x), we say that f is a restriction of g, or that g is an extension of f.

Examples:

1) Identity on a set \mathbb{E} is an application defined as follows:

$$Id_{\mathbb{E}}: \mathbb{E} \longrightarrow \mathbb{E}$$

$$x \longmapsto Id_{\mathbb{E}}(x) = x$$

$$f: \mathbb{R}^{*}_{+} \longrightarrow \mathbb{R}^{*}_{+}$$

$$x \longmapsto f(x) = \frac{1}{x} \text{ and } g: \mathbb{R}^{*}_{+} \longrightarrow \mathbb{R}$$

$$x \longmapsto g(x) = \frac{x-1}{x+1},$$

then

2)

$$gof: \mathbb{R}^*_+ \longrightarrow \mathbb{R}$$

 $x \longmapsto gof(x) = g(f(x)) = \frac{1-x}{1+x}$

1.3.2 Injections, surjections, bijections

Injective Application (one-to-one)

An application (map) $f:\mathbb{E} \to \mathbb{F}$ is injective if and anly if (1 or 2):

1.

$$\forall x, x' \in \mathbb{E} : x \neq x' \Longrightarrow f(x) \neq f(x')$$

2.

$$\forall x, x' \in \mathbb{E} : f(x) = f(x') \Longrightarrow x = x'$$

Figure 1.2: Injective

Exemples 1.9 :

- Id_E is injective.
- The map $f : \mathbb{R}_+ \longrightarrow \mathbb{R}$ and $f(x) = x^2$ is injective.
- $x \mapsto \sin x$ is not injective on \mathbb{R} because $\frac{\pi}{2} \neq \frac{5\pi}{2}$ but $\sin \frac{\pi}{2} = \sin \frac{5\pi}{2} = 1$
- $x \mapsto x^2$ is not injective on \mathbb{R} because $(1)^2 = (-1)^2$ but -1 = 1.
- $f:]-1, +\infty[\longrightarrow]-1, +\infty[\text{ and } f(x) = \frac{1}{x+1}.$

Let $x, x' \in \left]-1, +\infty\right[$, we have

$$f(x) = f(x') \Longleftrightarrow \frac{1}{x+1} = \frac{1}{x'+1} \Longleftrightarrow x+1 = x'+1 \Longleftrightarrow x = x'$$

then f is injective.

Surjective Application (onto)

A map $f:\mathbb{E} \to \mathbb{F}$ is surjective if every element *y* of \mathbb{F} is the image of at least one element *x* of \mathbb{E} , i.e.:

 $\forall y \in \mathbb{F}, \exists x \in \mathbb{E}: y = f(x)$

In other words, $f(\mathbb{E}) = \mathbb{F}$.

Figure 1.3: Surjective

Exemples 1.10 :

- $Id_{\mathbb{E}}$ is surjective.
- The map $f: \mathbb{R} \longrightarrow \mathbb{R}_+$ and $f(x) = x^2$ is surjective.
- $x \mapsto \cos x$ is not surjective on \mathbb{R} because 2 It has no antecedent
- $f:]-1, +\infty[\longrightarrow \mathbb{R}^* \text{ and } f(x) = \frac{1}{x+1}$ let $y \in \mathbb{R}^*$:

$$y = f(x) \iff y = \frac{1}{x+1} \iff x = \left(\frac{1}{y} - 1\right)$$

then $\forall y \in \mathbb{R}^*$, $\exists x = \left(\frac{1}{y} - 1\right) \in \left]-1, +\infty\right[: y = f(x)$ Then *f* is surjective.

Bijective Application (one-to-one correspondence)

The application f is a bijective, if and only if, it is both injective and surjective, i.e.

 $\forall y \in \mathbb{F}, \exists ! x \in \mathbb{E} : y = f(x).$

Existence: comes from surjectivity,

Uniqueness: comes from injectivity.

If f is not injective or is not surjective then it is not bijective.

Figure 1.4: Bejection

Exemples 1.11 :

- 1) $Id_{\mathbb{E}}$ is bijective.
- The application $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ and $f(x) = x^2$ is bijective.
- $f: \mathbb{R} \longrightarrow]0, +\infty[$ and $f(x) = e^x$

Let $x, x' \in \mathbb{R}$, we have

$$f(x) = f(x') \iff e^x = e^{x'} \iff x = x'$$

Then *f* is injective, and let $y \in (0, +\infty)$:

$$y = f(x) \iff y = e^x \iff x = \ln y$$

Then f is surjective, so it is bijective.

Corollary 1.3.1 Let \mathbb{E} and \mathbb{F} two sets and $f : \mathbb{E} \to \mathbb{F}$ the application, then

f is bijective \iff there exists a unique application which we note $f^{-1}: \mathbb{F} \to \mathbb{E}$ such that

$$f \circ f^{-1} = Id_{\mathbb{F}}, \text{ and } f^{-1} \circ f = Id_{\mathbb{E}}$$

 $x = f^{-1}(y) \Longleftrightarrow y = f(x),$

Let f the application from \mathbb{E} to \mathbb{F} , and g the application from \mathbb{F} to \mathbb{G} . We have the following implications.

- If f and g are injectives, then $g \circ f$ is injective.

- If $g \circ f$ is injective, then f is injective.

- If f and g are surjectives, then $g \circ f$ is surjective.

- If $g \circ f$ is surjective, then g is surjective.

- If f and g are bijectives, then $g \circ f$ is bijective, and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

1.3.3 Image and inverse image

Let $A \subset \mathbb{E}$ and $M \subset \mathbb{F}$.

1. We call image of A by f, the set of images of the elements of A noted:

$$f(A) = \{f(x), x \in A\} \subset \mathbb{F}$$

f(A) is a part of \mathbb{F} ,

2. We call inverse image of M by f, the set of antecedents of the elements of M, denoted

$$f^{-1}(M) = \{x \in \mathbb{E}, f(x) \in M\} \subset \mathbb{E}$$

 $f^{-1}(B)$ is a part of \mathbb{E} , Formally we have:

$$\forall y \in \mathbb{F}, (y \in f(A) \iff \exists x \in A, y = f(x))$$

$$\forall x \in \mathbb{E}, \left(x \in f^{-1}(M) \Longleftrightarrow f(x) \in M\right).$$

Exemples 1.12 :

$$f : \mathbb{R} \longrightarrow \mathbb{R} \text{ and } f(x) = x^2$$

1. $f([0,3]) = \{f(x), x \in [0,3]\} = \{x^2, x \in [0,3]\}$

$$(x \in [0,3]) \iff 0 \le x \le 3$$

$$\iff 0 \le x \le 3$$

$$\iff 0 \le x^2 \le 9 (f \text{ is increasing})$$

$$\implies f([0,3]) = [0,9]$$

2.
$$f([0,3]) = \{f(x), x \in [-3,3]\} = \{x^2, x \in [-3,3]\}$$

$$(x \in [-3,3]) \iff x \in [-3,0] \cup [0,3]$$
$$\iff (-3 \le x \le 0) \lor (0 \le x \le 3)$$
$$\iff (0 \le x^2 \le 9) \lor (0 \le x^2 \le 9).$$
$$\implies f([-3,3]) = [0,9]$$

3.
$$f^{-1}([1,4]) = \{x, f(x) \in [1,4]\} = \{x, x^2 \in [1,4]\}$$

$$\begin{array}{ll} \left(x^2 \in [1,4]\right) & \Longleftrightarrow & (1 \leq x \leq 2) \lor (-2 \leq x \leq -1) \\ & \Leftrightarrow & x \in [-2,-1] \cup [1,2] \\ & \Longrightarrow & f^{-1}\left([1,4]\right) = [-2,-1] \cup [1,2] \end{array}$$

Proposition 1.3.2 Let $f : \mathbb{E} \longrightarrow \mathbb{F}$, $A, B \subset \mathbb{E}$ and $M, N \subset \mathbb{F}$, then $A \subset B \Longrightarrow f(A) \subset f(B)$. $N \subset M \Longrightarrow f^{-1}(N) \subset f^{-1}(M)$. $f(A \cup B) = f(A) \cup f(B)$. $f(A \cap B) \subset f(A) \cap f(B)$.

5
$$f^{-1}(M \cup N) = f^{-1}(M) \cup f^{-1}(N).$$

6 $f^{-1}(M \cap N) = f^{-1}(M) \cap f^{-1}(N).$
7 $f^{-1}(C_{\mathbb{F}}^{M}) = C_{\mathbb{E}}^{f^{-1}(M)}.$

Prove:

3. Let $y \in \mathbb{F}$, then

$$\begin{array}{ll} [y \in f(A \cup B)] & \iff \exists x \in A \cup B; y = f(x) \\ & \iff \exists x [((x \in A) \lor (x \in B)) \land (y = f(x))] \\ & \iff \exists x [((x \in A) \land (y = f(x)) \lor ((x \in B) \land (y = f(x))] \\ & \iff [\exists x ((x \in A) \land (y = f(x))] \lor [\exists x ((x \in B) \land (y = f(x))] \\ & \iff (y \in f(A)) \lor (y \in f(B)) \\ & \iff y \in f(A) \cup f(B) \end{array}$$

which shows that $f(A \cup B) = f(A) \cup f(B)$. 4. Let $y \in \mathbb{F}$, then

$$\begin{array}{ll} [y \in f(A \cap B)] & \iff & \exists x \in A \cap B; y = f(x) \\ & \iff & \exists x [((x \in A) \land (x \in B)) \land y = f(x)] \\ & \iff & \exists x [((x \in A) \land (y = f(x)) \land ((x \in B) \land (y = f(x))] \\ & \implies & [\exists x ((x \in A) \land (y = f(x))] \land [\exists x ((x \in B) \land (y = f(x))] \\ & \implies & (y \in f(A)) \land (y \in f(B)) \\ & \implies & y \in f(A) \cup f(B) \end{array}$$

which shows that $f(A \cap B) \subset f(A) \cap f(B)$. 5. Let $x \in \mathbb{E}$, then

$$\begin{aligned} \left[x \in f^{-1}(N \cup M) \right] &\iff f(x) \in N \cup M \\ &\iff (f(x) \in N) \lor (f(x) \in M) \\ &\iff \left(x \in f^{-1}(M) \right) \lor \left(x \in f^{-1}(N) \right) \\ &\iff \left(x \in f^{-1}(M) \right) \lor \left(x \in f^{-1}(N) \right) \\ &\iff x \in f^{-1}(M) \cup f^{-1}(N) \end{aligned}$$

which shows that $f^{-1}(M \cup N) = f^{-1}(M) \cup f^{-1}(N)$. 6. Let $x \in \mathbb{E}$, then

$$\begin{array}{ll} \left[x \in f^{-1}(N \cap M) \right] & \iff & f(x) \in N \cap M \\ & \iff & \left(f(x) \in N \right) \wedge \left(f(x) \in M \right) \\ & \iff & \left(x \in f^{-1}(M) \right) \wedge \left(x \in f^{-1}(N) \right) \\ & \iff & \left(x \in f^{-1}(M) \right) \wedge \left(x \in f^{-1}(N) \right) \\ & \iff & x \in f^{-1}(M) \cap f^{-1}(N) \end{array}$$

which shows that $f^{-1}(M \cap N) = f^{-1}(M) \cap f^{-1}(N)$. 7. Let $x \in \mathbb{E}$, then

$$\begin{array}{rccc} x & \in & f^{-1}(C_{\mathbb{F}}^{M}) \Longleftrightarrow f(x) \in C_{\mathbb{F}}^{M} \\ \iff & (f(x) \in \mathbb{F}) \wedge (f(x) \notin M) \\ \iff & (x \in \mathbb{E}) \wedge \left(x \notin f^{-1}(M)\right) \\ \iff & x \in C_{\mathbb{E}}^{f^{-1}(M)} \end{array}$$

which shows that $f^{-1}(C^M_{\mathbb{F}}) = C^{f^{-1}(M)}_{\mathbb{E}}$. **Remark**: The sets $C^{f(A)}_{\mathbb{F}}$ and $f(C^A_{\mathbb{E}})$ are not always comparable.

1.3.4 Exercises

Ever	vise 1 3 1.	Let P O	and R be	three logic	al proposition	IS	
LACI	150 1.0.1.	$\underline{\mathrm{Let} I}, \underline{\mathcal{V}}$			a proposition		
1.	Prove that	tt $P \land O \Leftarrow$	$\Rightarrow P \lor O$				
	D						
2.	Prove the	$\mathfrak{t} \mid (P \Longrightarrow$	$Q) \iff ($	$(P \lor Q) \cdot C$	onclude $P ==$	$\geq Q$.	
2	Drove the	$+ \left[\left(\mathbf{D} \right) \right]$	\vec{O}	$\widetilde{\mathbf{n}}_{1}$	$(\mathbf{n} \setminus \mathbf{n})$	τ	
э.	Prove una	$\mathfrak{ll} \mid (I) \Longrightarrow$	\mathcal{Q} (\mathcal{Q}	$\implies \kappa_{j} = $	$(P \Longrightarrow K)$.		
0.		, T(-	\mathcal{L}	,,] ,	(1 / 11)		

Solution:

1. Prove that $\overline{P \wedge Q} \iff \overline{P} \vee \overline{Q}$: By using the truth table

Р	Q	$P \wedge Q$	$\overline{P \wedge Q}$	\overline{P}	\overline{Q}	$\overline{P} \lor \overline{Q}$
1	1	1	0	0	0	0
1	0	0	1	0	1	1
0	1	0	1	1	0	1
0	0	0	1	1	1	1

We see that the logical propositions $(\overline{P \wedge Q})$ and $(\overline{P} \vee \overline{Q})$ have the same truth values, so they are equivalent.

2. a) Prove that $(P \Longrightarrow Q) \iff (\overline{P} \lor Q)$: Using the truth table

P	Q	\overline{P}	$P \Rightarrow Q$	$\overline{P} \lor Q$
1	1	0	1	1
1	0	0	0	0
0	1	1	1	1
0	0	1	1	1

We see that the logical propositions $(P \Rightarrow Q)$ and $(\overline{P} \lor \overline{Q})$ have the same truth values, so they are equivalent.

b) Conclusion of $\overline{P \Longrightarrow Q}$: Using negation to equivalent the previous, we find

$$\overline{(P \Longrightarrow Q)} \Longleftrightarrow \overline{(\overline{P} \lor Q)} \Longleftrightarrow P \land \overline{Q}.$$

P	Q	R	$P \Longrightarrow Q$	$Q \Longrightarrow R$	$(P \Longrightarrow Q) \land (Q \Longrightarrow R)$	$P \Longrightarrow R$	\Rightarrow .
1	1	1	1	1	1	1	1
1	1	0	1	0	0	0	1
1	0	1	0	1	0	1	1
1	0	0	0	1	0	0	1
0	1	1	1	1	1	1	1
0	1	0	1	0	0	1	1
0	0	1	1	1	1	1	1
0	0	0	1	1	1	1	1

3. Prove that $[(P \Longrightarrow Q) \land (Q \Longrightarrow R)] \Longrightarrow (P \Longrightarrow R)$: Using the truth table

We see that the logical propositions $((P \Longrightarrow Q) \land (Q \Longrightarrow R))$ and $(P \Longrightarrow R)$ have the same truth values, so they are equivalent.

Ex	erc	ise	1.	3.2	:	I)	Are	e tl	ne :	foll	ow	ing	, p	rop	osi	tio	ns	true	e o	r fa	alse	?	anc	l g	ive	th	eir	
neg	gati	on.						•		2																		
	1.	∀x	$c \in$	$\mathbb{R},$	$\forall y$	$\in I$	$\mathbb{R}:$	x^2	= y	v ² =	\Rightarrow	<i>x</i> =	= y	•														
	2.	∀x	$c \in$	ℕ,	$\forall y$	$\in \mathbb{I}$	ℕ:	x^2	= 1	v ² =	\Rightarrow	<i>x</i> =	= <i>y</i>															
	3.	٦	c∈	\mathbb{R} .	Ξv	$\in]$	$\mathbb{R}:$	<i>x</i> =	= e ³																			
	4	¥1	- 	™	Ξv	\in	R•	r =	- 0)	,																		
	5			\mathbb{R}^{1}	⊐y ∀v	C	₽.	r - r -		·																		
	5. 6			,≣∞	$\bigvee y$ $\forall y$.⊿⊾	л –	- e.	•																		
TT)	0. T	X	$C \in \mathcal{C}$	ҝ,	∨y ſ	Εı	K : .	x =	= e [,]	•		πъ	-									c						
II)	Le	t f	b	e a	fu	nct	.10n	0	t f	:1	\rightarrow	ĸ	: 1	Зy	usi	ng	10	g1Ca	ul c	lna	nti	hei	S, (exp	ores	s t	he	
fol	low	/in§	g pi	rop	osi	tio	ns:																					
	1.	f	is a	ı bo	oun	de	d.																					
	2.	f	is a	ı co	onti	nu	ous	or	ηI.																		_	
		v																										

Solution:

Ia) True or false? and give their negation.

- 1. Is false ($(-x)^2 = x^2 \Rightarrow x = -x, \forall x \in \mathbb{R})$
- 2. Is true ($x \ge 0$, and $y \ge 0$)
- 3. Is true (Easily, $\exists x = 1, \exists y = 0 : 1 = e^0$).
- 4. Is false (if $x \le 0$, there is no y)
- 5. Is false (for example, $\exists x = 1$, and $y = 2 : 1 \neq e^2$).
- 6. Is false (Exponential function is always positive)

Ib) Negation the previous propositions

- $\overline{1}. \quad \exists x \in \mathbb{R}, \exists y \in \mathbb{R} : x^2 = y^2 \land x \neq y. \\ \overline{2}. \quad \exists x \in \mathbb{N}, \exists y \in \mathbb{N} : x^2 = y^2 \land x \neq y.$
- $\overline{3}. \quad \forall x \in \mathbb{R}, \forall y \in \mathbb{R} : x \neq e^{y}.$
- $\overline{4}. \quad \exists x \in \mathbb{R}, \exists y \in \mathbb{R} : x \neq e^y.$
- $\overline{5}. \quad \forall x \in \mathbb{R}, \exists y \in \mathbb{R} : x \neq e^y.$
- $\overline{6}. \quad \exists x \in \mathbb{R}, \exists y \in \mathbb{R} : x \neq e^y.$

II) Let f be a function of $f: I \to \mathbb{R}$: Using logical quantifiers:

- 1. *f* is a bounded $\Leftrightarrow (\exists m, M \in \mathbb{R}, \forall x \in I : m \leq f(x) \leq M)$.
- 2. *f* is a continuous on $I \Leftrightarrow (\forall \varepsilon > 0, \forall x, a \in I, \exists \delta > 0 : |x a| < \delta \Rightarrow |f(x) f(a)| < \varepsilon)$.

Exercise 1.3.3:) By contrapositive proof, sh	ow that:
$(x \neq 2) \land (y)$	$\neq 2) \implies xy - 2x - 2y + 4 \neq 0$	0.
	, , , , , , , , , , , , , , , , , , , ,	
II) Let $x, y \in \mathbb{Q}$. Provide the set of t	ove the following equivalence	e:
$x+y.\sqrt{3}=1$	$1 \iff (x = 1 \text{ and } y = 0).$	

Solution:

I) By contrapositive proof, show that

$$(x \neq 2) \land (y \neq 2) \Longrightarrow xy - 2x - 2y + 4 \neq 0.$$

that's to say

$$xy - 2x - 2y + 4 = 0 \Longrightarrow (x = 2) \lor (y = 2).$$

We have

$$xy - 2x - 2y + 4 = (x - 2) \times (y - 2)$$

then

$$xy - 2x - 2y + 4 = (x - 2) \times (y = 2) = 0 \Longrightarrow (x = 2) \lor (y = 2).$$

So

$$(x \neq 2) \land (y \neq 2) \Longrightarrow xy - 2x - 2y + 4 \neq 0.$$

II) Let $x, y \in \mathbb{Q}$. Prove the following equivalence:

 $x + y \cdot \sqrt{3} = 1 \iff (x = 1 \text{ and } y = 0).$

1. (\Rightarrow) :Using absurd proof: suppose that $x + y \cdot \sqrt{3} = 1$ and $x \neq 1 \lor y \neq 0$, so we get $\sqrt{3} = \frac{1-x}{y} \in \mathbb{Q}$, this is contraduction. Then

$$x+y.\sqrt{3} = 1 \Rightarrow (x = 1 \text{ and } y = 0).$$

2. $(\Leftarrow): (x = 1 \text{ and } y = 0) \Rightarrow x + y \cdot \sqrt{3} = 1 + 0\sqrt{3} = 1$ (this is easy).

$$(x = 1 \text{ and } y = 0) \Rightarrow x + y \cdot \sqrt{3} = 1.$$

1.3 Applications

Ex	era	vise	1	3.4																								
	1.	L	et	F =	• {	{1.	2}	{?	3.4	5]	.{	6.7	7.8	}}.	W	hic	:h (of t	he	fol	lov	vin	g n	ror	oos	itio	ns	
		are	e tr	ue:	l	ι-,	_)	, (-	, .	, - ,	, ι	-,.	, -	, , ,				-					0 r	r				
	_	a)	{1	2	C	F;	b)	7 (∈I	; c) {	6,′	7,8	}∈	F	; d)) {	{3	,4,	5}`	$\left.\right\} \in$	F	; e)	Ø	e	F;	f)	
		Ø	Ċ.	F.									-															-
	2.	L	et ∤	1;,	B b	e t	wo	pa	rts	of a	a se	et E	. S	ho	w t	hat	•											-
		a)	(A	$\cup I$	$(\mathbf{S})^c$	= /	\mathbf{A}^{c} ($\cap B$	c.																			-
		b)	$A \setminus$	(A	$\setminus B$) =	A	$\cap B$	•																			

Solution:

- 1. $F = \{\{1,2\},\{3,4,5\},\{6,7,8\}\}.$
 - $\{1,2\} \subset F$ is false, because $\{1,2\}$ is not a part of *F*.
 - $7 \in F$, is false, because 7 is not an element of *F*.
 - $\{6,7,8\} \in F$, is true, because $\{6,7,8\}$ is an element of *F*.
 - $\{\{3,4,5\}\} \subset F$, is true, because $\{6,7,8\}$ is a part of *F*.
 - $\emptyset \in F$, is false, because \emptyset is not an element of *F*.
 - $\emptyset \subset F$, is true, because \emptyset is a part of *F*.
- 2. Let A; B be two parts of a set E.

a) Show that: $(A \cup B)^c = A^c \cap B^c$. Let $x \in (A \cup B)^c$, then $[x \in (A \cup B)^c] \Leftrightarrow x \notin (A \cup B)$

$$\Leftrightarrow \quad x \notin A \land x \notin B$$

 $\Leftrightarrow \quad x \in A^c \land x \in B^c$

$$\Leftrightarrow x \in A^c \cap B^c.$$

b) Show that:
$$A \setminus (A \setminus B) = A \cap B$$
. Let $x \in A \setminus (A \setminus B)$, then
 $[x \in A \setminus (A \setminus B)] \iff (x \in A) \land (x \notin (A \setminus B))$

$$(A \setminus B)] \Leftrightarrow (x \in A) \land (x \notin (A \setminus B)) \\ \Leftrightarrow (x \in A) \land \overline{(x \in (A \setminus B))}$$

$$\Leftrightarrow (x \in A) \land \overline{(x \in A) \land (x \notin B)}$$

$$\Leftrightarrow (x \in A) \land [(x \notin A) \lor (x \in B)]$$

- $\Leftrightarrow \quad [(x \in A) \land (x \notin A)] \lor [(x \in A) \land (x \in B)]$
- $\Leftrightarrow [x \in \varnothing] \lor [x \in A \cap B]$
- $\Leftrightarrow x \in \emptyset \cup (A \cap B)$

$$\Leftrightarrow x \in (A \cap B).$$

Exer	vise 1	3.5		I) I	[_et	A	B t	wo	set	s									
				- / -	200	· • ,	2.		50										
	A =	$\{(x,$	v)	€I	\mathbb{R}^2	: 4)	к —	v =	= 1	}.									
		((···	, , ,					2		′ ر									
and																			
	B =	$\{(t -$	+1	,4 <i>t</i>	+	3),	t e	$\in \mathbb{R}$	}.										
Prove	that A	4 =	<i>B</i> .																
II) Le	t A, B	anc	1 C	thr	ee	set	s g	ive	n, s	ho	w t	hat							
	$B \subset A$	$A \subset$	C	\Leftarrow	$\Rightarrow A$	U.	<i>B</i> =	= A	\cap	С.									

Solution:

I) Prove that A = B.

1. $A \subset B$: Let $(x, y) \in A$, with 4x - y = 1, then (x, y) = (x, 4x - 1). Replacing X by t + 1 we find

 $(x,y) = (x,4x-1) = (t+1,4t+3) \in B.$

2. $B \subset A$: Let $(x, y) \in B$, then there exists $t \in \mathbb{R}$ such that x = t + 1 and y = 4t + 3. So

$$4x - y = 4(t + 1) - (4t + 3) = 1 \Rightarrow (x, y) \in A.$$

II) Let A, B and C three sets given, show that

$$B \subset A \subset C \iff A \cup B = A \cap C.$$

1. (\Rightarrow) : We have $B \subset A \Rightarrow A \cup B = A$ *and* $A \subset C \iff A = A \cap C$, then

$$A \cup B = A \cap C$$

2. (
$$\Leftarrow$$
): We have
 $A \subset A \cup B \Rightarrow A \subset A \cap C \Rightarrow A \subset C$
and
 $B \subset A \cup B \Rightarrow B \subset A \cap C \Rightarrow B \subset A \land B \subset C$
then

 $B \subset A \subset C$.

1.3 Applications

Ex	erc	ise	1.	3.6	•	Le	t th	e n	nap	(ar	pli	cat	ior	n) <i>f</i>	':⊪	₹ —	$\rightarrow \mathbb{R}$	be	e de	fin	ed	by					
		<i>c</i> (`		ſ	$\frac{1}{2}$		if	x	<	0																
		<i>f</i> (.	x) :	= <) x	+	$\frac{1}{2}$	if	x	>	0																
							2	5																			
	1.	D	rav	v th	ne g	rap	h c	of <i>f</i>	·																		
	2.	D	ete	rm	ine	f([—]	1, 1]);	f^{-1}	$({$	0})	;f	$^{-1}($	$\left\{\frac{1}{2}\right\}$	});	$;f^{-}$	$^{-1}(]$	—c	⊳, 1	[).						
	3.	Tl	ne	ma	p f	is	it iı	njeo	ctiv	ve (one	e-to)-01	ne)	? i	s it	su	rjeo	ctiv	e (ont	0)5	?, is	it	bije	ecti	ve
		(or	ne-	to-(one	co	rre	spo	nd	enc	e)'	?															
	4.	Fi	nd	the	e in	ter	val	for	W	hic	h t	he	ma	p <i>f</i>	' is	bij	ect	ive	, th	en	de	teri	mir	ne t	he	reci	ip-
		roc	cal	ma	ap <i>f</i>	c-1	in	thi	s ir	nter	val																

Solution:

- 1. Determine
 - $f([-1,1]) = f([-1,0]) \cup f(]0,1]) = \left\{\frac{1}{2}\right\} \cup \left]\frac{1}{2}, \frac{3}{2}\right] = \left[\frac{1}{2}, \frac{3}{2}\right].$ $f^{-1}(\{0\}) = \{x : f(x) = 0\} = \emptyset.$ $f^{-1}(\left\{\frac{1}{2}\right\} = \left\{x : f(x) = \frac{1}{2}\right\} = \left]-\infty, 0\right].$ $f^{-1}(]-\infty, 1[) = \{x : f(x) < 1\} = \left]-\infty, \frac{1}{2}\right[.$
- 2. Injectivity, surjectivity and bijectivity.
 - The map f is not injective because f(-3) = f(-2), but -2 ≠ -3. or f(]-∞,0]) = {1/2}.
 The map f is not surjective because f(x) = 0, does not accept solutions.

 - Finally *f* is not bijective.
- 3. Find the interval for which the map f is bijective.
 - i) *f* it is injective if and anly if $x \in [0, +\infty[$.
 - 2i) *f* it is surjective if and anly if $y \in \left[\frac{1}{2}, +\infty\right[$.
 - 3i) Then f is bijective if and anly if $x \in [0, +\infty)$ and $f(x) \in [\frac{1}{2}, +\infty)$.
- 4. Determine the reciprocal map f^{-1} in this interval.

$$\begin{array}{cccc} f^{-1} : & \left[\frac{1}{2}, +\infty\right[& \longrightarrow & \left[0, +\infty\right[\\ & y & \longmapsto & x = f^{-1}(y) \end{array} \end{array}$$

then

$$x = f^{-1}(y) \Leftrightarrow y = f(x) = x + \frac{1}{2} \Leftrightarrow x = y - \frac{1}{2}.$$

So

$$f^{-1}(y) = y - \frac{1}{2}.$$

Fv	ore	ico	1 /	27		Ŀα	• th	o fe			na		m	one	f	. TD í	2	Ē	on	d a	• TD	,	TD 2	2 h	da	fin	d
	ert	150	1	5.1	•	LC	l III		лс	W1	ng	lwt) 111	aps	, j	. 111		≁ 11∖	an	ug	. 110	. —	Ш.	UC	ue	11110	-u
by:																											
		f	r v	- (- r1	, a	nd	a(1	r) -	_ (r ²	r)															
		J (.	л, у) –	- лу	, a	nu	8()	·) -	- (.	r ,.	л).															
	1.	St	uď	v tł	ne i	nie	ctiv	vity	7. SI	ırie	ecti	vit	v a	nd	biie	ecti	vit	v o	f f	an	d g						
	2	Fi	nd	f	g	and	<i>q</i> (f	,	J-			,					, .	- J		- 0	-					
				<i>J</i> -	0.		0	<i>. .</i>																			

Solution:

- 1. Study the injectivity, surjectivity and bijectivity of f and g.
 - Injectivity of *f*: We have *f*(2,5) = *f*(5,2) = 10, but (2,5) ≠ (5,2), then *f* is not injective.
 - Surjectivity of f: We have ∀z ∈ ℝ, ∃ (x, y) ∈ ℝ² : z = xy, take, for example x = 1, y = z. Then f is surjective.
 Finally f is not bijective.
 - Surjectivity of g: The equation $(x^2, x) = (1,3)$ (For example), does not accept solutions in \mathbb{R} then g is not surjective.

• Injectivity of g: Let
$$a, b \in \mathbb{R}$$
 then

$$[g(a) = g(b)] \Rightarrow (a^2, a) = (b^2, b)$$

$$\Rightarrow (a = b) \land (a^2 = b^2)$$

$$\Rightarrow (a = b) \land (a = b \lor a = -b)$$

$$\Rightarrow [(a = b) \land (a = b)] \lor [(a = b) \land (a = -b)]$$

$$\Rightarrow a = b.$$

Then *g* is injective.

Finally g is not bijective.

2. Find
$$f \circ g$$
 and $g \circ f$.
i) $g \circ f$:

$$\mathbb{R}^2 \xrightarrow{f} \mathbb{R} \xrightarrow{g \circ f} \mathbb{R}$$

and $\forall (x,y) \in \mathbb{R}^2$, $g \circ f(x,y) = g[f(x,y)] = g(xy) = (x^2y^2, xy)$. ii) $f \circ g$:

$$\mathbb{R} \xrightarrow{g} \mathbb{R}^2 \xrightarrow{f} \mathbb{R}$$

and $\forall x \in \mathbb{R}, f \circ g(x) = f[g(x)] = f(x^2, x) = x^3$.

1.3.5 Additional exercises

Fs	er	cis	•	1	38		Ιe	tΔ	· 1	$\frac{1}{2}C$	he	th	ree	na	rte	of s	a se	t F	Γ	ros	ie t	hat				
		CIS		1	5.0	•	LU	ι 11	,,L	, c		un		Pa	115	01 6	i se	πL	• 1	101		mai	•			
a)	$\mathbf{P}($	A		\mathbf{R}		P((\mathbf{A})	$\cap F$	$\mathbf{b}(\mathbf{F})$	2)																
<i>a)</i>	4 (111	14	D)	_	1 (.	(1)	11	(D	')•																
h)	$(\Delta$	1.1	R	\setminus	C		$(\Delta$	\sqrt{c}	7) I	$ (\mathbf{F}) $	2 ~	C)														
0)	11	Υ.	$\boldsymbol{\nu}_{j}$	/ ^		_	11	$^{\rm c}$	1	(L	\sim	\mathcal{C}	•													
()	R	- ,	1		C	<u> </u>	1	111	R _	- 1	$\cap \mathbf{C}$	7														
C)	\boldsymbol{D}	_ /	1			· · ·	ГЛ	\mathbf{OI}	– י	п		•														

1.3 Applications

Ex	erc	ise	1.	3.9		Le	t th	e n	nap) (a	ppl	ica	tio	n) _	f:	\mathbb{R}^2	\rightarrow	\mathbb{R}^2	be	de	fin	ed	by		
		f(.	x, y) =	= (x	+	y, x	y)																	
	1			.1	Ì	c (<i>c(</i>		\ \														
	1. 2	–Sr Fi	10v nd	v tr the	iat in	f(x ver	,y se) =	J(age	y, x). reii	mag	Je)	of	the	se	t { (0.	1)}						
	2. 3.	f	is i	t ir	ijec	tiv	e (one	-to	-or	ie)	?, 5	surj	ect	ive	(0	nto)?	•/]	•					
		v			5		Ì				Í		5			Ì									

Ex	erc	ise	1.	3.1	0:	P	AR'	TIE	I:	Le	t th	e f	unc	ctio	n <i>f</i>	^c be	e de	efin	ed	fre	m	R 1	оŀ	₹ b	y:		
		\vee		ED-	<u>(</u> ,)	x	—	1																		
		$\vee x$	€.	ҝ,,	f(x)) =	$\overline{x^2}$	2+	$\overline{1}$.																		
	1.	Pı	ov	e th	iat j	f(a	ı) =	= f	$\left(\frac{a}{a}\right)$	$\frac{+1}{-1}$) fc	or a	.11 a	≠	1.												
	2.	f	is i	t in	ijec	tiv	e?	is i	t bi	ijec	tiv	e (0	one	-to	-on	le c	orr	esp	on	der	nce)?.	Jus	tify	/?		

PARTIE II: Let *h* be the restriction of *f* on the interval $I = \left] -\infty, \left(1 - \sqrt{2}\right) \right]$.

Fx	erc	ise	1	31	1.																							
	1	150	1.	.1	1.					1/					•.							•		۱ م	-			
	1.	Pı	OV	e ti	nat	the	eq	uat	ıon	h(x)	=1	<i>n</i> d	oes	sn't	ad	mı	t sc	lut	ıon	S 11	: <i>m</i>	€.	K /.	J, v	vhe	re	
								ļ	-1		ſ																	
		the	e in	ter	val	<i>J</i> =	=	$\overline{2(1)}$	$\frac{-1}{\sqrt{2}}$	1);	0	•																
	2	Pt	ov	e tł	nat	h io		$\frac{2}{16}$	∕∠ ≥cti	$\frac{1}{0}$	fre	m	I to	h th	e iı	ntei	wa	17										
	2.	11	01	c u	iai	<i>n</i> 1	5 a	oŋ		011	110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	I U	, m	υn	1101	va.	. J.										

2. Algebraic Structure

2.0.1 Internal composition law (*I.C.L*)

We say that the composition law \star is an internal composition law (I.C.L) of a set \mathbb{E} if and only if

 $\forall (x,y) \in \mathbb{E} \times \mathbb{E} : (x \star y) \in \mathbb{E}.$

Exemples 2.1 :

1. The law \cap is an internal composition law of the set $\mathscr{P}(\mathbb{E})$ (set of parts of \mathbb{E}), because

 $\forall (A,B) \in \mathscr{P}(\mathbb{E}) \times \mathscr{P}(\mathbb{E}) : A \cap B \in \mathscr{P}(\mathbb{E}).$

2. We define on \mathbb{N} the law \star by $n \star m = n + e^m$, then \star is not a law of internal composition because $e^m \notin \mathbb{N}$.

Definitions

Let \star and T be two internal composition laws of \mathbb{E} , then:

• The law \star is associative if:

 $\forall (x, y, z) \in \mathbb{E} \times \mathbb{E} \times \mathbb{E}, \quad (x \star y) \star z = x \star (y \star z).$

• The law \star is commutative if:

$$\forall (x, y) \in \mathbb{E} \times \mathbb{E}, \quad x \star y = y \star x.$$

• We say that e is a neutral (an identity) element of the law \star if:

 $\exists e \in \mathbb{E}, \forall x \in \mathbb{E}, x \star e = e \star x = x.$

• An element x is invertible in \mathbb{E} , if there exists $x' \in \mathbb{E}$ (called the inverse of x) such that:

 $\forall x \in \mathbb{E}, \exists x' \in \mathbb{E} : x' \star x = x \star x' = e$

We say that \star is distributive with recpect to T , if: $\forall (x, y, z) \in \mathbb{E} \times \mathbb{E} \times \mathbb{E}$,

 $x \star (y \intercal z) = (x \star y) \intercal (x \star z)$ and $(y \intercal z) \star x = (x \star y) \intercal (x \star z)$.

Exemples 2.2:

1. Let *E* a set. we provide $\mathscr{P}(\mathbb{E})$ by the internal composition law \cap :

- -The law \cap is associative $(A \cap B) \cap C = A \cap (B \cap C)$.
- -The law \cap is commutative $A \cap B = B \cap A$.
- -The law \cap accept a neutral element $E: A \cap E = E \cap A = A$
- -The law \cap does not accept an inverse element.

2. We define on \mathbb{Z} the law of internal composition T by $n \mathsf{T} m = n + m - 3$

-T is associative

$$(n \top m) \top p = (n + m - 3) \top p = n + m - 3 + p - 3 = n + m + p - 6,$$

$$n \intercal (m \intercal p) = n \intercal (m + p - 3) = n + m + p - 3 - 3 = n + m + p - 6.$$

-T is a commutative n T m = n + m - 3 = m + n - 3 = m T n

- -T accept a neutral element $e = 3 : n + e 3 = n \Longrightarrow e = 3$
- An inverse element of *n* with recpect to \top is $n' = 6 n : n + n' 3 = 3 \Longrightarrow n' = 6 n$

Proposition 2.0.1 Let \star be an internal composition law in \mathbb{E} , then following properties hold:

- The neutral element is unique;
- The inverse of any element *x* ∈ 𝔅 is unique (i.e., *x* has only one inverse, i.e., if *x* has 2 inverses then they are equal);

• For every
$$x \in \mathbb{E}$$
, $(x^{-1})^{-1} = x$

- For every $x, y \in \mathbb{E}$, $(x * y)^{-1} = y^{-1} * x^{-1}$.
- The neutral element is unique: Let *e* and *s* be two neutral elements, then by the definition we have

$$e = e \star e' = e' \star e$$
, and $e' = e \star e' = e' \star e$,

so

e = e'.

• The inverse of any element $x \in \mathbb{E}$ is unique: By Definition, let x_1^{-1}, x_2^{-1} be two inverses of x, which means that $x \star x_1^{-1} = x_1^{-1} \star x = e$.and $x \star x_2^{-1} = x_2^{-1} \star x = e$. Computing $x_1^{-1} \star x \star x_2^{-1}$ we obtain:

$$x_1^{-1} \star x \star x_2^{-1} = e \star x_2^{-1} = x_2^{-1}$$
 (using that $x_1^{-1} \star x = e$),

and

$$x_1^{-1} \star x \star x_2^{-1} = x_1^{-1} \star e = x_1^{-1}$$
 (using that $x \star x_2^{-1} = e$).

So

$$x_1^{-1} = x_2^{-1}.$$

- For every $x \in \mathbb{E}$, $(x^{-1})^{-1} = x$: We want to show that the inverse of x^{-1} is equal to x, then
 - $e = (x^{-1})^{-1} \star x^{-1} \Leftrightarrow x \star x^{-1} = (x^{-1})^{-1} \star x^{-1}$ and $e = x^{-1} \star (x^{-1})^{-1} \Leftrightarrow x \star x^{-1} = x^{-1} \star (x^{-1})^{-1}.$

So

$$\left(x^{-1}\right)^{-1} = x.$$

• For every $x, y \in \mathbb{E}$, $(x \star y)^{-1} = y^{-1} \star x^{-1}$:

$$(x \star y) \star (y^{-1} \star x^{-1}) = (x \star (y \star y^{-1})) \star x^{-1} = (x \star e) \star x^{-1} = x \star x^{-1} = e$$

In the same way we show that

$$\left(y^{-1} \star x^{-1}\right) \star \left(x \star y\right) = e$$

then we deduce that $(x \star y)$ is invertible and that

$$(x \star y)^{-1} = y^{-1} \star x^{-1}.$$

2.0.2 Group Structure

Groups

Définition 2.0.1 We call a group any group provided with an I.C.L which we note "*", such that

1. \star is associative,

2. \star has a neutral element,

3. Every element of \mathbb{G} has an inverse with recpect to \star .

We denote (\mathbb{G}, \star) group. If, \star is commutative, then (\mathbb{G}, \star) is called a **commutative group** or **abelian group**.

```
Exemples 2.3 :
```

 $(\mathbb{R},+),(\mathbb{Z}+),(\mathbb{C},+)$ and $(\mathbb{Q}^*,.)$ are groups.

Subgroups

Let (\mathbb{G}, \star) be a group, of the neutral element *e* and let $\mathbb{H} \subset \mathbb{G}$ with $\mathbb{H} \neq \emptyset$. We say that (\mathbb{H}, \star) is a subgroup of (\mathbb{G}, \star) , if and only if

 $\left\{ \begin{array}{l} 1).e \in \mathbb{H},\\ 2). \forall a, b \in \mathbb{H}, \ a \star b \in \mathbb{H},\\ 3). \forall a \in \mathbb{G}, \ a \in \mathbb{H} \Longrightarrow a^{-1} \in \mathbb{H}. \end{array} \right.$

■ Exemples 2.4 : (ℂ, ⋆), ({e}, ⋆) are subgroups. Proposition 2.0.2 Let (\mathbb{G}, \star) be a group and $\mathbb{H} \subset \mathbb{G}$, then \mathbb{H} is a subgroup of $\mathbb{G} \iff \begin{cases} \mathbb{H} \neq \emptyset \\ \forall a, b \in \mathbb{H}, a \star b^{-1} \in \mathbb{H}. \end{cases}$

Proof. **1.** Let \mathbb{H} be a subgroup of (\mathbb{G}, \star) , then :

i) *e* an neutral element in \mathbb{H} , then $\mathbb{H} \neq \emptyset$.

ii) Let $a, b \in \mathbb{H}$, since \mathbb{H} provided with the law \star is a group then b^{-1} exists in \mathbb{H} and since \mathbb{H} is stable with respect to \star we deduce that $a \star b^{-1} \in \mathbb{H}$.

2. Conversely, let \mathbb{H} be a subset of \mathbb{G} such that $\begin{cases} \mathbb{H} \neq \emptyset \\ \forall a, b \in \mathbb{H}, a \star b^{-1} \in \mathbb{H}. \end{cases}$

Show that (\mathbb{H}, \star) is a group.

i) As $\mathbb{H} \neq \emptyset$ then $\exists a \in \mathbb{H}$ and according to the second hypothesis

 $e = a \star a^{-1} \in \mathbb{H},$

which shows that the law \star accept a neutral element *e* in \mathbb{H} .

ii) Let $x \in \mathbb{H}$, since $e \in \mathbb{H}$ then according to the second hypothesis we will have $x^{-1} = e \star x^{-1} \in \mathbb{H}$

which shows that for every element x in \mathbb{H} is invertible in \mathbb{H} with recpect to the law \star to \mathbb{H} .

iii) The law \star in \mathbb{H} is an internal composition law, because for all x and y in \mathbb{H} , according to ii) we have $y^{-1} \in \mathbb{H}$ and using the second hypothesis we deduce that $x \star y = x \star (y^{-1})^{-1} \in \mathbb{H}$.

iv) The law \star in \mathbb{H} is associative, because \star is associative in \mathbb{G} .

From i) the prove of the previous proposition, we see that: If e is the neutral element of a group \mathbb{G} , then every subgroup of \mathbb{G} contains e and we deduce the following corollary.

Corollary 2.0.3 Let (\mathbb{G}, \star) is a group and $\mathbb{H} \subset \mathbb{G}$, then

 $\mathbb{H} \text{ is a subgroup of } \mathbb{G} \iff \begin{cases} e \in \mathbb{H} \\ \forall a, b \in \mathbb{H}, \ a \star b^{-1} \in \mathbb{H}. \end{cases}$

• Exemples 2.5 : Let (\mathbb{G}, \star) be a group and $H = \{a \in \mathbb{G}; a \star x = x \star a, \forall y \in \mathbb{G}\}$, then \mathbb{H} is a subgroup of \mathbb{G} . Indeed,

i) If *e* is a identity element of \star , then $e \in \mathbb{H}$ because : $\forall x \in \mathbb{G}, e \star x = x \star e = x$

ii) Let
$$a, b \in \mathbb{H}, c \in \mathbb{G}\left(a \star b^{-1} \stackrel{?}{\in} \mathbb{H}\right)$$
, then
 $(a \star b^{-1}) \star c = (a \star b^{-1}) \star (c^{-1})^{-1}$
 $= a \star (b^{-1} \star (c^{-1})^{-1})$ because \star is associative
 $= a \star (c^{-1} \star b)^{-1}$
 $= a \star (b \star c^{-1})^{-1}$ because $b \in \mathbb{H}$
 $= a \star ((b^{-1})^{-1} \star c^{-1})^{-1}$
 $= a \star (c \star b^{-1})$
 $= (a \star c) \star b^{-1}$ because \star is associative
 $= (c \star a) \star b^{-1}$ because $a \in \mathbb{H}$
 $= c \star (a \star b^{-1})$ because \star is associative

hence shows that $a \star b^{-1} \in \mathbb{H}$. From i) and ii) we deduce that \mathbb{H} is a subgroup of \mathbb{G}

2.0.3 Ring Structure

Rings

Définition 2.0.2 Let the set \mathbb{A} provided with two internal composition laws \star .and T We say that $(\mathbb{A}, \star, \mathsf{T})$ is a ring if and only if

- 1. (\mathbb{A}, \star) is commutative group,
- 2. T is an associative,
- 3. T is a distributive on \star ,
- 4. T accept a neutral element.
- If τ is a commutative, then $(\mathbb{A}, \star, \tau)$ is called a commutative ring.
- Let (\mathbb{A}, \star) be a group, then x has an inverse we denote -x.
- If T has a neutral element, we note it 1 or $1_{\mathbb{A}}$ and we say that the ring $(\mathbb{A}, \star, \mathsf{T})$ is unitary
- For all x ∈ A, it is invertible with recpect to the second law T The inverse of an element x ∈ A is denoted x⁻¹.
- Let $(\mathbb{A}, \star, \mathsf{T})$ be a commutative ring. We say that $y \in \mathbb{A} \{\mathbf{0}_{\mathbb{A}}\}$ is a divisor of *x*, if

 $\exists z \in \mathbb{A} - \{0_{\mathbb{A}}\}, \ x = y \mathsf{T} z.$

• If 0_A does not have a divisor in \mathbb{A} , we say that $(\mathbb{A}, \star, \mathsf{T})$ is an integrity ring.

Exemples 2.6:

- 1. $(\mathbb{R}, +, \times)$ and $(\mathbb{C}, +, \times)$ are rings.
- 2. Let \mathbb{E} be a non-empty set. $(\mathscr{P}(\mathbb{E}), \cap, \cup)$ is not a ring.

Sub-Rings

Définition 2.0.3 Let $(\mathbb{A}, \star, \mathsf{T})$ be a ring with $0_{\mathbb{A}}$ is the neutral element of \star and 1_A is the neutral element of T . Let \mathbb{H} be a subset of \mathbb{A} . We say that $(\mathbb{H}, \star, \mathsf{T})$ is a subring of $((\mathbb{A}, \star, \mathsf{T})$ if and only if

1. (\mathbb{H}, \star) is a subgroup of (\mathbb{A}, \star) ,

2. $\forall x, y \in \mathbb{H}, x \top y \in \mathbb{H},$

3. $1_A \in \mathbb{H}$

- Exemples 2.7 :
 - 1. $(\mathbb{Q}, +, \times)$ is a subring of $(\mathbb{R}, +, \times)$.
 - 2. $(\mathbb{Z}, +, \times)$ is a subring of $(\mathbb{Q}, +, \times)$.

Proposition 2.0.4 A subset \mathbb{H} of \mathbb{A} is a subring if and only if:

1. $\mathbb{H} \neq \emptyset$, 2. $\forall x, y \in \mathbb{H}, (x \star y^{-1}) \in \mathbb{H}$ 3. $\forall x, y \in \mathbb{H}, (x \intercal y) \in \mathbb{H}.$

Proof. We know that \mathbb{H} is a subgroup of $(\mathbb{A}, *)$ if and only if

 $(\mathbb{H} \neq \emptyset) \land (\forall x, y \in \mathbb{H}, (x \star y^{-1}) \in \mathbb{H}),$

so for \mathbb{H} to be a subring of \mathbb{A} , it suffices to see if the restriction of the second law T is internal in \mathbb{H} , It's enough to show that $(\forall x, y \in \mathbb{H}, (x \mathsf{T} y) \in \mathbb{H})$, which completes the proof of our proposition.

2.0.4 Field Structure

Fields

Définition 2.0.4 Let the set \mathbb{K} provided with two internal composition laws \star .and T We say that $(\mathbb{K}, \star, \mathsf{T})$ is a field if and only if

1. $(\mathbb{K}, \star, \mathsf{T})$ is a ring,

2. T accept an identity element $1_{\mathbb{K}}$,

3. For every element in $\mathbb{K} - \{e_{\star}\}$ has an inverse in \mathbb{K} with respect to \intercal . (Where e_{\star} is an identity element of \star)

If T is commutative, then (\mathbb{K}, \star, T) is called a **commutative field.**

■ Exemples 2.8 :

1. $(\mathbb{R}, +, \times), (\mathbb{Q}, +, \times)$ and $(\mathbb{C}, +, \times)$ are fields.

2. Let \mathbb{E} be a non-empty set. $(\mathscr{P}(E), \cap, \cup)$ is not a field.

Proposition 2.0.5 Every body is an integral ring.

Subfield

Définition 2.0.5 We call subfield, of a body $(\mathbb{K}, \star, \intercal)$, any subset \mathbb{K}' of \mathbb{K} such that, provided with the restrictions of the laws \star and \intercal , is a body. $\mathbb{K}' \subset \mathbb{K}$ is a subfield of $(\mathbb{K}, \star, \intercal)$ if and only if

```
1. \mathbb{K}' \neq \emptyset,
```

2.
$$\forall x, y \in \mathbb{K}', (x \star y), (x \intercal y) \in \mathbb{K}'.$$

2.1 Exercises

Exercise 2.1.1: Study the properties (ICL, Commutativity, Associativity, Neutral element, Inverse element) on \mathbb{E} , for the following composition laws \star : 1. $\mathbb{E} = \mathbb{R}$ and $x \star y = x + y - 1$. 2. $\mathbb{E} = \mathbb{Z}$ and $x \star y = x + y - x^2 y$. (\mathbb{E}, \star) is it a commutative group?

Solution:

- 1. For the first law:
 - i) ICL: \star is an internal composition law in \mathbb{R} , because: $\forall (x,y) \in \mathbb{R} \times \mathbb{R}, x + y 1 \in \mathbb{R}$.
 - 2i) Commutativity: \star is a commutative, because: $\forall (x, y) \in \mathbb{R} \times \mathbb{R}, x \star y = x + y 1 = y + x 1 = y \star x$.
 - 3i) Associativity: \star is an associative, because: $\forall (x, y) \in \mathbb{R} \times \mathbb{R}$:

$$(x \star y) \star z = (x + y - 1) \star z = (x + y - 1) + z - 1 = x + y + z - 2,$$

and
$$x \star (y \star z) = x + (y \star z) - 1 = x + (y + z - 1) - 1 = x + y + z - 2$$

4i) Neutral element: $\exists e \in \mathbb{R}, \forall x \in \mathbb{R}; x \star e = e \star x = x$,

$$x \star e = x + e - 1 = x \Longrightarrow e = 1.$$

5i) Invese element: $\forall x \in \mathbb{R}, \exists^2 x' \in \mathbb{R}; x \star x' = x' \star x = 1$,

$$x \star x' = x + x' - 1 = 1 \Longrightarrow x' = 2 - x \in \mathbb{R}.$$

Then, (\mathbb{R}, \star) is a commutative group.

- 2. For the second law:
 - i) ICL: \star is an internal composition law in \mathbb{Z} , because: $\forall (x,y) \in \mathbb{Z} \times \mathbb{Z}, x + y x^2y \in \mathbb{Z}$.
 - 2i) Commutativity: \star is not a commutative, because: $\forall (x,y) \in \mathbb{Z} \times \mathbb{Z}, x \star y = x + y x^2 y \neq x + y y^2 x = y \star x$.
 - 3i) Associativity: \star is not an associative, because: $\forall (x, y) \in \mathbb{Z} \times \mathbb{Z}$:

$$\begin{cases} (x \star y) \star z = (x \star y) + z - (x \star y)^2 z = (x + y - x^2 y) + z - (x + y - x^2 y)^2 z \\ and \\ x \star (y \star z) = x + (y \star z) - x^2 (y \star z) = x + (y + z - y^2 z) - x^2 (y + z - y^2 z). \end{cases}$$

Then $(x \star y) \star z \neq x \star (y \star z)$.

4i) Neutral element: $\exists^{?} e \in \mathbb{Z}, \forall x \in \mathbb{Z}; x \star e = e \star x = x$,

$$x \star e = x + e - x^2 e = x \Longrightarrow e(1 - x^2) = 0 \Longrightarrow e = 0$$
, (to the right)

and

$$e \star x = e + x - e^2 x = x \Longrightarrow e(1 - ex^2) = 0 \Longrightarrow e = 0.$$
 (to the left)

Then e = 0.

5i) Invese element: $\forall x \in \mathbb{Z}, \exists^2 x' \in \mathbb{Z}; x \star x' = x' \star x = 0$,

$$x \star x' = x + x' - x^2 x' = 0 \Longrightarrow x' = \frac{x}{x^2 - 1} \notin \mathbb{Z}.$$
 (in general)

For example for $x = \pm 1$ or x = 2, does not exist x' in \mathbb{Z} such that $\pm 1 \star x = 0$ or $2 \star x = 0$.

So *x* does not accept an inverse on \mathbb{Z} . Then (\mathbb{Z}, \star) does not form a group.

Ex	erc	ise	2.	1.2	:	We	e de	efin	e t	he	cor	npo	osit	ion	la	w *	or	ı E	_	\mathbb{R}^*	X	R,	by:			
		$ \mathbf{\nabla} ($	1		(1)	- Π	7	(1)	(ľ		(1	1								 _	
		∇ (a, i)),	(c,	a)	€¤	2:(a,	b);	* (C	,a) =	(a	c,a	a –	- D _,).								
Sh	ow	tha	it (E,,	∗) i	s a	no	n-c	on	nmı	itat	ive	gr	our).											
					<i>′</i>								0	1												

Solution:

- 1) ICL: \star is an internal composition law in $\mathbb{R}^* \times \mathbb{R}$, because: $\forall (a,b), (c,d) \in \mathbb{R}^* \times \mathbb{R}$: $ac \in \mathbb{R}^*$, and $ad + b \in \mathbb{R}$.
- 2) Commutativity: \star is not a commutative, because: $\forall (a,b), (c,d) \in \mathbb{R}^* \times \mathbb{R} : ad + b \neq ca + d$.
- 3) Associativity: \star is an associative, because: $\forall (a,b), (c,d), (x,y) \in \mathbb{R}^* \times \mathbb{R}$:

$$\begin{cases} \{(a,b)\star(c,d)\}\star(x,y) = (acx,acy+ad+b), \\ and \\ (a,b)\star\{(c,d)\star(x,y)\} = (acx,acy+ad+b). \end{cases}$$

4) Neutral element: $\exists^{?}(e, f) \in \mathbb{R}^{*} \times \mathbb{R}, \forall (a, b) \in \mathbb{R}^{*} \times \mathbb{R}; (a, b) \star (e, f) \stackrel{1}{=} (a, b) \stackrel{2}{=} (e, f) \star (a, b),$ $\stackrel{1}{=}) : (a, b) \star (e, f) = (a, b) \Longrightarrow (ae, af + b) = (a, b) \Rightarrow \{e = 1 \text{ and } f = 0, \text{ and } 2 \stackrel{2}{=}) : (e, f) \star (a, b) = (a, b) \Longrightarrow (ea, eb + f) = (a, b) \Rightarrow \{e = 1 \text{ and } f = 0, \text{ then } (e, f) = (1, 0).$ 5) Invese element: $\forall (a, b) \in \mathbb{R}^{*} \times \mathbb{R}, \exists^{?} (a', b') \in \mathbb{R}^{*} \times \mathbb{R}; (a, b) \star (a', b') \stackrel{1}{=} (1, 0) \stackrel{2}{=} (a', b') \star (a, b),$ $\stackrel{1}{=}) : (a, b) \star (a', b') = (1, 0) \Longrightarrow (aa', ab' + b) = (1, 0) \Rightarrow \{a' = \frac{1}{a} \text{ and } b' = \frac{-b}{a}, \text{ and$

$$\stackrel{2}{=}) : (a',b') \star (a,b) = (1,0) \Longrightarrow (a'a,a'b+b') = (1,0) \Rightarrow \left\{a' = \frac{1}{a} \text{ and } b' = \frac{-b}{a} \text{ then } (a',b') = \left(\frac{1}{a},\frac{-b}{a}\right).$$

Then, (\mathbb{E}, \star) is a non-commutative group.

Fx	er	vise	2	13																						
	1	Le	±.		.) I		n	n_	cor	nm	uta	tiv	ص د	rou	n '	She	W	tha	t tk	ne (en	ter				
	1.	LU	l (u,,	, i		i II	JII-			uta	ιιν	- g	ou	p. ,	SIR	<i>, v</i>	una	ιu		CII					
				С	(G) =	$\{a$	E	G:	x * .	a =	- a-	* x.	∀x	E	G}										
						/	(**		ς,.			Cr	,			ر ح	,									
		is :	a sı	ıbs	grou	up (of (G.	*).																	
	2.	Sh	ow	th	at t	he	cer	iter	Â		{(a	.0)	;a	$\in Z$	$\mathbb{Z}\}$	is a	a sı	ıbg	roı	ip (of (\mathbb{Z}^2	.+).		
											C.	, _ ,			J			-0		1			, .			

Solution:

- 1) Show that the center $C(\mathbb{G}) = \{a \in \mathbb{G}; x \star a = a \star x, \forall x \in \mathbb{G}\}$ is a subgroup of (\mathbb{G}, \star) . (let *e* be a neutral element)
 - (a) $C(\mathbb{G}) \neq \emptyset$, because $\forall x \in \mathbb{G} : x \star e = e \star x \Rightarrow e \in C(\mathbb{G})$.

(b) Let
$$a \in C(\mathbb{G}) : a^{-1} \stackrel{?}{\in} C(\mathbb{G})$$
, then let $x \in \mathbb{G} :$
 $x \star a^{-1} = e \star x \star a^{-1}$
 $= a^{-1} \star a \star x \star a^{-1}$
 $= a^{-1} \star x \star a \star a^{-1}$
 $= a^{-1} \star x \star a \star a^{-1}$

then
$$a^{-1} \in C(\mathbb{G})$$
.

(a) Let $a, b \in C(\mathbb{G})$: $a \star b \stackrel{?}{\in} C(\mathbb{G})$, then let $x \in \mathbb{G}$:

$$x \star a \star b = a \star x \star b = a \star b \star x,$$

so $a \star b \in C(\mathbb{G})$, and finally $C(\mathbb{G})$ is a subgroup of (\mathbb{G}, \star) .

- 2) Show that the center A = {(a,0); a ∈ Z} is a subgroup of (Z²,+). (Remark (0,0) is a neutral element of (Z²,+) and (-a,-b) is an inverse element of (a,b)).
 - (a) $\mathbb{A} \neq \emptyset$, because $(0,0) \in \mathbb{A}$.
 - (b) For all $(a,0) \in C(\mathbb{G}) : (-a,0) \in \mathbb{A}$, because $-a \in \mathbb{Z}$
 - (c) For all $(a,0), (b,0) \in \mathbb{A}$: $(a,0) + (b,0) = (a+b,0) \in \mathbb{A}$, because $a+b \in \mathbb{Z}$ Finally \mathbb{A} is a subgroup of $(\mathbb{Z}^2, +)$.

Fх	erc	ise	2	1.4	•	We		ns	ide	r oi	n IR	th	e fo		wi	nσ	two) ir	nter	nal	s c	om	no	siti	on	law	's'	
	UIC	150	 •.		•			/115.	uu.	1 01	1 110		0 10	5110	, ,, 1	116		^J II	1101	mai	50	om	PO	5111	on	iuvv	5.	
		rА) v	_ 1	r +	v –	- 1	я	nd	r	Ωı	,	r -	⊢ν	_ 1	v												
		<i>A</i> ()	<i>y</i>			9	т,	u	110	- 11	0,		л	9		<i>y</i> .												
	1.	Sh	ow	tha	at 6	∂ is	s ar	as	soc	ciat	ive	an	d a	co	mr	nut	ativ	ve.										
	2.	$(\mathbb{R}$. ⊕	$\cdot \otimes$) i	s it	ac	con	nm	uta	tive	e ri	ng?)														
	3.	$(\mathbb{R}$, ⊕	∞) i	s it	a f	iel	1?				0															
		(, 0	, 0	, -																							

Solution:

1 Show that \otimes is an associative and a commutative. So, let $x, y, z \in \mathbb{R}$, then

$$x \otimes y = x + y - xy = y + x - yx = y \otimes x,$$

and therefore \otimes is a commutative. And for the associativity, show that $x \otimes$

 $(y \otimes z) = (x \otimes y) \otimes z$

$$(x \otimes y) \otimes z = (x \otimes y) + z - (x \otimes y)z$$

= $x + y + z - xy - xz - yz + xyz$

and

$$x \otimes (y \otimes z) = x + (y \otimes z) - x (y \otimes z)$$

= x + y + z - xy - xz - yz + xyz.

Hence the associativity

- 2 $(\mathbb{R}, \oplus, \otimes)$ is it a commutative ring?
 - (a) (\mathbb{R}, \oplus) it is a commutative group (See exercise 1) ii) \otimes is an associative and a commutative. (Question 1)
 - (b) \otimes accept a neutral element (so be it *e*'): show that $\exists e' \in \mathbb{R}, \forall x \in \mathbb{R}; x \otimes e' = e' \otimes x = x$.

$$e' \otimes x = x \otimes e' = x + e' - xe' = x \Leftrightarrow e'(1 - x) = 0 \Leftrightarrow e' = 0,$$

Then e' = 0.

(c) \otimes is distributive on \oplus . So, let $x, y, z \in \mathbb{R}$, it is enough to verify that

1) : $(x \oplus y) \otimes z = (x \otimes z) \oplus (y \otimes z)$ and

2) : $x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z)$

and sinse \otimes is a commutative, so it is enough to verify 1) or 2), then

$$(x \oplus y) \otimes z = (x \oplus y) + z - (x \oplus y) z$$

$$= (x+y-1) + z - (x+y-1)z = x+y+2z - xz - yz - 1$$

and

$$(x \otimes z) \oplus (y \otimes z) = (x \otimes z) + (y \otimes z) - 1 = x + z - xz + y + z - yz - 1 = x + y + 2z - xz - yz - 1$$

Hence \otimes is distributive on \oplus .

Conclusion: $(\mathbb{R}, \oplus, \otimes)$ is a commutative ring.

3 $(\mathbb{R}, \oplus, \otimes)$ is it a field

It is enough to verify that there exist an inverse element for all $x \in \mathbb{R} - \{e = 1\}$ with recpect to the law \otimes . So let $x \in \mathbb{R}, \exists^2 x' \in \mathbb{R}$, such that $x \otimes x' = x' \otimes x = 0$,

$$x \otimes x' = x' \otimes x = 0 \Longrightarrow x + x' - xx' = 0 \Longrightarrow x' = \frac{x}{1 - x}.$$

Then for all $x \in \mathbb{R} - \{1\}$, accept an inverse element $x' = \frac{x}{1-x} \in \mathbb{R}$. Finallywe conclude that $(\mathbb{R}, \oplus, \otimes)$ is a commutative ring.

2.2 Additional exercises

 Exercise 2.2.1:
 We define the internal composition law \triangle on \mathbb{Q} , by:

 $\forall \alpha, \beta \in \mathbb{Q} : \alpha \triangle \beta = (\alpha - 1)(\beta - 1) + 1.$
 (\mathbb{Q}, \triangle) is it a commutative group?
Ex	erc	ise	2.	2.2		We		ons	ide	r oi	n R	th	e fo	olle	wi	nø	two	ə ir	nter	mal	s c	or	no	siti	on	law	/S:	
		100						/115	iue		1 10		0 10		, 1	'ns		5 11	1001	ma		011	ιpo	5111		14.11	5.	
		хA	θv		x +	v –	- 2.	a	nd	x	×۱	v =	xv	′	2.x -	-2	v +	6.										
					1	9	_,				0,		JUJ			_	' '	0.										
	1.	Sł	lov	v tł	nat	(\mathbb{R})	Ð) is	a c	on	ımı	ita	tive	e gr	ou	p.												
	2.	Sł	100	v tł	nat	⊗ i	s a	sso	cia	tive	e ar	nd 1	that	t it	acc	ep	t a	neı	ıtra	l e	len	nen	t.					
	3.	(]	R. A	ə. 6	⊘) i	s it	a	con	nm	uta	tive	e ri	ng?	>		1												
	4	(]	R.A	Э. б	a) i	s it	al	ood	$v^{?}$				0.															
		(#	<u> </u>	, x	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				· ·																			

Exercise 2.2.3: Let (\mathbb{R}, \star) be a commutative group, and <i>e</i> it is neutral element.
PART I: Let $H = \{x \in \mathbb{R} : x \star x = e\}$ a subset of \mathbb{R} .
- Prove that (H, \star) is a subgroup of (\mathbb{R}, \star) .
PART II: Let the law * defined by:
$ \forall x, y \in \mathbb{R}; \ x \star y = x + y - 2. $
And for all $n \in \mathbb{N}^*$, we pose $x^{(1)} = x$ and $x^{(n+1)} = x^{(n)} \star x$
(a) Calculate $x^{(2)}, x^{(3)}$ and $x^{(4)}$.
(b) Prove that $\forall n \in \mathbb{N}^*$: $x^{(n)} = nx - 2(n-1)$.

3. Rings of Polynomials

3.0.1 Concepts

In the following, $\mathbb{K} = \mathbb{R}$ or \mathbb{C}

• A polynomial *P*, is an expression of the form

$$P = \sum_{i=n}^{i=0} a_i X^i = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0,$$

where $n \in \mathbb{N}$, and the coefficients $a_i, i \in \{0, ..., n\}$, are elements of K.

• The set of all polynomials with coefficients in \mathbb{K} is denoted by $\mathbb{K}[X]$.

 $\mathbb{K}[X] = \{ \text{ the polynomials with coefficients in } \mathbb{K} \}.$

• A polynomial $P \in \mathbb{K}[X]$ is said to be zero polynomial if all the coefficients a_n are zero, i.e

 $P = 0 \iff a_n = a_{n-1} = \cdots = a_1 = a_0 = 0$

• If $a_n \neq 0$ then the degree of *P* is *n*, and we note deg *P* = *n*, so

$$\deg P \le n \iff P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$$

- By convention the degree of the zero polynomial is $-\infty$ (deg(0) = $-\infty$.)
- If $a_n = 1$, we say that *P* is the **monic** (unitary) polynomial.

• Exemples 3.1 1) $P_1 = X^6 - X + 8$, is a polynomial in $\mathbb{R}[X]$ 2) $P_2(X) = X^4 + 5X^2 - iX$ is a polynomial in $\mathbb{C}[X]$

3) $Q_1 = X^6 - \sqrt{X} + 8$, $Q_2(X) = X^4 + 5\sin(X^2) - \frac{X}{X^2 + 1}$ are not polynomials 4) $P_3 = X^7 - 8X^4 + 13$ is monic polynomial and deg $P_3 = 7$.

3.0.2 Operations on $\mathbb{K}[X]$

On $\mathbb{K}[X]$ we define the following laws, if $P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0, Q = b_m X^m + b_{m-1} X^{m-1} + \dots + b_1 X + b_0$, then:

- 1. $P = Q \iff a_i = b_i \ \forall i \in \{0, 1, \dots, n\}$ 2. $P \pm Q = \sum_{\substack{i=0 \ i=max(n,m)}}^{i=0} (a_i \pm b_i) X^i$, and $\deg(P \pm Q) = \max(\deg P, \deg Q)$. 3. $\lambda P = \sum_{\substack{i=0 \ i=n}}^{i=0} \lambda a_i X^i$, with $\lambda \in \mathbb{K}$, and $\deg(\lambda P) = \deg P$. 4. $PQ = \sum_{\substack{k=0 \ k=m+m}}^{k=0} c_k X^k$ such that $c_k = \sum_{\substack{i=0 \ i=k}}^{i=0} a_i b_{k-i} \cdot (a_k = 0, \forall k \ge n+1, b_k = 0, \forall k \ge m+1)$, and $\deg(PQ) = \deg P + \deg Q$.
- 5. $\mathbb{K}[X]$ is stable for these laws, we say that it is an algebra
- **Exemples 3.2** $P = X^3 + 1$, $Q = X^5 X$, then

$$2P - 3Q = -3X^5 + 2X^3 + 3X + 2$$
, and $\deg(2P - 3Q) = \deg g = 5$.

and

$$PQ = \sum_{k=8}^{k=0} c_k X^k = X^8 + X^5 - X^4 - X, \text{ and } \deg(PQ) = \deg P + \deg Q = 8.$$

$$c_8 = c_5 = 1, c_7 = c_6 = c_3 = c_2 = c_0 = 0, \text{ and } c_1 = -1.$$

Associated polynomials

We say that A and B are associated if, and only if:

$$\exists k \in \mathbb{K} \ A = kB \text{ or } B = kA.$$

• Exemples 3.3 The polynomials $X - \frac{1}{2}, 2X - 1, -2X + 1$ are associated.

3.0.3 Polynomial Division

Theorem 3.0.1 Euclidean division $\forall A, B \in \mathbb{K}[X]$ such that $B \neq 0, \exists Q, R \in \mathbb{K}[X]$ unique such that A = BQ + R with deg $R < \deg B$, or R = 0. Q is called the quotient of the Euclidean division of A by B and R the remainder The rest).

Proof. • Existence: Let $B = b_0 + b_1 X + ... + b_p X^p \in \mathbb{K}[X]$ be a fixed. The reasoning is then done by induction on the degree of the polynomial *A*. The hypothesis of recurrence at rank *n*, $\mathscr{P}(n)$ is:

We notice if n < p, then $\mathscr{P}(n)$ is true: A = B.0 + A. Let $n \ge p$ and assume the recurrence hypothes is true for all $k \le n-1$ and show that then $\mathscr{P}(n)$ is true. The polynomial A is written

$$A = a_0 + a_1 X + \dots + a_n X^n$$
, where $a_n \neq 0$.

Let us then consider the polynomial $C = A - \frac{a_n}{b_p} X^{n-p} B$. The degree of deg $C \le n-1$. By induction hypothesis we then know that there exists a pair of polynomials (Q, R) such that: C = BQ + R and $\deg(R) < \deg(B)$. It follows that $A = B(Q + \frac{a_n}{b_p}X^{n-p}) + R$, with $\deg(R) < \deg(B)$.

• Uniqueness : Suppose that A = BQ + R = BQ' + R' with deg $R < \deg B$ et deg $R' < \deg B$ Then deg $(R - R') \le \max(\deg R, \deg R') < \deg B$ or R - R' = B(Q' - Q). Hence

 $\deg(Q'-Q)<0 \Rightarrow Q'-Q=0.$

We deduce Q = Q' and R = R'.

B divides A if and only if the rest of the Euclidean division of A by B is zero polynomail.

• Exemples 3.4 1. Let $P = X^5 - X + 2$, $Q = X^3 + 1$ be two polynomial in $\mathbb{K}[X]$. Let us divide Q by P

$$\frac{x^{5} - x + 2 |x^{3} + 1}{-x^{5} - x^{2} - x + 2 |x^{2} - x + 2|}$$

Therefore,

$$\frac{X^5 - X + 2}{X^3 + 1} = X^2 + \frac{-X^2 - X + 2}{X^3 + 1}$$

or equivalently,

$$X^{5} - X + 2 = X^{2} (X^{3} + 1) + (-X^{2} - X + 2).$$

That is A = BQ + R where $Q = X^2$, and $R = -X^2 - X + 2$. 2.

then $2X^4 - X^3 + X^2 + X - 1 = (2X^2 - 3X)(X^2 + X + 2) + (7X - 1)$. 3.

 $2X^{3} + 5X^{2} + 7X + 8 = (X^{2} + X + 2)(2X + 3) + 2.$

Euclidean divisions

Définition 3.0.1 Let *A* and *B* two be polynomials in $\mathbb{K}[X]$. We say that *A* is a **divisor** of *B*, if and only if $\exists ! Q \in \mathbb{K}[X]$ such that B = AQ, we note $B \setminus A$. If, moreover, *B* is not a zero polynomial, then *Q* is unique.

- Exemples 3.5 1. The polynomial X is a divisor of $X^3 + X$.
 - 2. The polynomials X + i, X i, X + 1 are a divisors of $X^3 + X$.
 - 3. Every polynomial is a divisor of zero polynomial.

Proposition 3.0.2 Let A, B and C be three polynomials in $\mathbb{K}[X]$, then we have

- 1. $A \setminus B \Longrightarrow \deg A \le \deg B$.
- 2. $A \setminus B \land B \setminus C \Longrightarrow A \setminus C$.

3. $A \setminus B \land B \setminus A \Longrightarrow \exists \lambda \in \mathbb{K}$, such that $A = \lambda B$

- *Proof.* 1. $A \setminus B \Longrightarrow \exists Q \in \mathbb{K}[X]$, such that B = QA, then $\deg(B) = \deg(AQ) = \deg A + \deg Q$, since $\deg A \leq \deg B$.
 - 2. $A \setminus B \wedge B \setminus C \Longrightarrow \exists Q_1, Q_2 \in \mathbb{K}[X]$, such that $B = Q_1A$ and $C = Q_2B$ then $C = Q_2Q_1A = QA$, since $A \setminus C$.
 - 3. $A \setminus B \land B \setminus A \Longrightarrow \deg(A) \le \deg(B)$ and $\deg(B) \le \deg(A)$, since $\deg A = \deg B$. And • $A \setminus B \land B \setminus A \Longrightarrow \exists Q_1, Q_2 \in \mathbb{K}[X]$, such that $B = Q_1A$ and $A = Q_2B$ then $\deg Q_2 = \deg Q_1 = 0$, since Q_2, Q_1 are constants.

Division according to increasing powers

Theorem 3.0.3 Let *A* and *B* be two polynomials in $\mathbb{K}[X]$ and $k \in \mathbb{N}^*$. Then, there exists unique $Q, R \in \mathbb{K}[X]$ such that

$$A = BQ + X^{k+1}R$$

with, deg $Q \le k$, if $Q \ne 0$. 1. $52X + 3X^2 - X^3 = (1 + 2X - X^3)(2X - X^2 + 3X^2 + X^4) + X^{4+1}(-4 - X)$. 2. $-1 + X + X^2 = (-2 + X)(\frac{1}{2} - \frac{1}{4}X - \frac{5}{8}X^2) + X^{2+1}(\frac{5}{8})$.

Roots of a polynomial

Définition 3.0.2 Let *P* be a polynomial in $\mathbb{K}[X]$ and $\alpha \in \mathbb{K}$. We say that α is a root (zero) of *P* if $P(\alpha) = 0$.

 α is the root of order *k* (with $k \in \mathbb{N}^*$), (or of multiplicity *k*), if there exists $Q \in \mathbb{K}[X]$ such that $P = (X - \alpha)^k Q$ with $Q(\alpha) \neq 0$.

• Exemples 3.6 $X^4 - 1$ accept two real roots 1, -1 and accept four roots in \mathbb{C} 1, -1, i and -i.

Proposition 3.0.4 Let $P \in \mathbb{K}[X]$ and $\alpha \in \mathbb{K} : \alpha$ is a root of *P* if and only $X - \alpha$ divides *P*.

Proof. Let us carry out the Euclidean division of *P* by $X - \alpha$: $P = (X - \alpha)Q + R$ where the deg $R < \deg(X - \alpha)$. Therefore the polynomial *R* is the zero polynomial or the constant polynomial, but $P(\alpha) = 0$, then $P(\alpha) = (\alpha - \alpha)Q + R(\alpha) = R = 0$. We deduce the proposition.

Theorem 3.0.5 (D'Alembert-Gauss Theorem) Every non-constant polynomial of $\mathbb{C}[X]$ accept at least one root in \mathbb{C} .

Corollary 3.0.6 A non-zero polynomial of degree $n \in \mathbb{N}$ admits at most *n* roots.

3.0.4 Reducibility

Définition 3.0.3 We say that a polynomial $P(\deg P \ge 1)$ is irreducible if all the divisors of *P* are constant polynomials.

Définition 3.0.4 We say that a polynomial $P(\deg P \ge 1)$ is reducible if there exists $Q, R \in \mathbb{K}[X]$ such that $\deg Q \ge 1, \deg R \ge 1$ and P = QR.

Theorem 3.0.7 The only irreducible polynomials of $\mathbb{R}[X]$ are:

- The polynomials of degree 1.
- The polynomials of degree 2 with the discriminant strictly negative $(\Delta = b^2 4ac < 0)$.

Corollary 3.0.8 The irreducible polynomials of $\mathbb{C}[X]$ are exactly of degree 1.

R A polynomial is irreducible of $\mathbb{R}[X]$, it can be reducible to $\mathbb{C}[X]$. Then, it is clear that if a polynomial is reducible from $\mathbb{R}[X]$, then it is necessarily reducible from $\mathbb{C}[X]$.

- Exemples 3.7 All polynomials of degree "1" are irreducible in $\mathbb{R}[X]$ and in $\mathbb{C}[X]$.
 - The polynomials $X^3 1$, $X^2 3$ and $\overline{X^3} + 1$ are irreducible in $\mathbb{R}[X]$ and in $\mathbb{C}[X]$. Actually,
 - $X^{3}-1 = (X-1)(X^{2}+X+1)$, and $X^{2}-3 = (X-\sqrt{3})(X-\sqrt{3})$.
 - The polynomial $X^2 + 1$ is irreducible in $\mathbb{R}[X]$, but it is reducible in $\mathbb{C}[X]$, because

$$X^2 + 1 = (X - i)(X + i).$$

3.0.5 Greatest Common Divisor (g.c.d)

Définition 3.0.5 (*g.c.d*) Let *A* and *B* be two polynomials in $\mathbb{K}[X]$ both non-zero, then there exists a unique unitary polynomial *D* (not both zero) of greatest degree which divides both *A* and *B*. This polynomial is called the greatest common divisor of *A* and *B* and we note gcd(A;B) = D.

Exemples 3.8

 $gcd (X^{3} + 3X^{2} + 3X + 1, X^{3} + 2X^{2} + 2X + 1) = X + 1$

Définition 3.0.6 Two polynomials are said to be coprime if their GCD is 1

Euclid's algorithm

Let *A* and *B* be two non-zero polynomials such that $\deg A \ge \deg B$. So, Euclid's algorithm consists of performing Euclidean divisions until obtaining a zero remainder, as follows

 $A = BQ_1 + R_1,$

then, we divide B on R_1 , we have

$$B = R_1 Q_2 + R_2$$

Now, we divide R_1 on R_2 , we have

 $R_1 = R_2 Q_3 + R_3,$

We continue the divisions: R_2 on R_3 , R_3 on R_4 ··· until we obtain a zero remainder, as follows

$$R_{k-1} = R_k Q_{k+1} + R_{k+1}$$
; and $R_k = R_{k+1} Q_{k+2}$.

The g.c.d of A and B is R_{k+1} , that is to say the last non-zero remainder.

As the g.c.d is unique and monic, we take the monic polynomial associated with the last non-zero remainder of Euclid's algorithm.

• Exemples 3.9 $A = 2X^4 - X^3 + X^2 + X - 1$ and $B = 2X^2 - 3X$.

$$\underbrace{2X^4 - X^3 + X^2 + X - 1}_{A} = \underbrace{(2X^2 - 3X)}_{B} \underbrace{(X^2 + X + 2)}_{Q_1} + \underbrace{(7X - 1)}_{R_1},$$

and

$$\underbrace{(2X^2 - 3X)}_{B} = \underbrace{(7X - 1)}_{R_1} \underbrace{\left(\frac{2}{7}X + 2\right)}_{Q_2} + \underbrace{\left(\frac{-19}{49}\right)}_{R_2},$$

and

$$\begin{array}{c|c|c} 7X-1 & -\frac{19}{49} \\ -7X & -\frac{343}{19}X + \frac{49}{19} \\ \hline -1 & \\ 1 & \\ 0 & \\ \end{array}$$

$$\underbrace{(7X-1)}_{R_1} = \underbrace{\left(\frac{-19}{49}\right)}_{R_2} \underbrace{\left(\frac{-343}{19}X + \frac{49}{19}\right)}_{Q_3} + 0$$

Then $gcd(A, B) = \frac{-49}{19}R_2 = 1$

Theorem 3.0.9 (1^{*st*} Bézout's Theorem) Let *A* and *B* be two non-zero polynomials in $\mathbb{K}[X]$. If D = pgcd(A, B), then there exist two polynomials $U, V \in \mathbb{K}[X]$ such that AU + BV = D.

Exemples 3.10 Find a Bézout relation from the example presented previously:

$$B = R_1Q_2 + R_2 \iff B - R_1Q_2 = R_2$$
$$\iff B - (A - BQ_1)Q_2 = R_2$$
$$\iff -Q_2A + (1 + Q_1Q_2)B = R_2 = D,$$

that is to say

$$U = -Q_2 = -X - 2$$
, et $V = (1 + Q_1Q_2) = 1 + (X - 2)(X + 2) = X^2 - 3$

Coprime polynomails

Theorem 3.0.10 (2^{nd} Bézout's Theorem)

Two polynomials A and B are coprime if and only if there exist two polynomials U and V such that AU + BV = 1.

Theorem 3.0.11 (Gauss's Theorem)

If a polynomial divides a product of two polynomials and it is prime with one of the factors, it divides the other.

 $(A \setminus BC \text{ and } A \land B = 1) \Longrightarrow A \setminus C$

3.0.6 Factoring a polynomial into irreducible

Theorem 3.0.12 Let $P \in \mathbb{K}[X]$ be a non-constant polynomial, then there exist $k \in \mathbb{N}^*$ and irreducible polynomials P_1, P_2, \dots, P_k of $\mathbb{K}[X]$, such that

$$P = \beta P_1^{\alpha_1} P_2^{\alpha_2} \cdots P_k^{\alpha_k},$$

where, $\beta \in \mathbb{K}^*$ and $\alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{N}^*$. The polynomials P_1, P_2, \dots, P_k are unique up to permutation.

• Exemples 3.11 1. Decompose $P = X^8 + X^4 + 1$ into irreducible factors in $\mathbb{R}[X]$, in $\mathbb{C}[X]$.

a In $\mathbb{R}[X]$, we have

$$X^{8} + X^{4} + 1 = (X^{4} + 1)^{2} - X^{4} = (X^{4} + 1 + X^{2})(X^{4} + 1 - X^{2})$$

also

$$\begin{array}{rcl} (X^4+1+X^2) &=& (X^2+1)^2-X^2=(X^2+1+X)(X^2+1-X)\\ & and\\ X^4-X^2+1 &=& (X^2+1)^2-3X^2=(X^2+1+\sqrt{3}X)(X^2+1-\sqrt{3}X), \end{array}$$

Then

$$P = (X^{2} + X + 1)(X^{2} - X + 1)(X^{2} + \sqrt{3}X + 1)(X^{2} - \sqrt{3}X + 1).$$

b In $\mathbb{C}[X]$, we can search for the roots of *P* in $\mathbb{C}[X]$, we have

$$\begin{aligned} X^2 + 1 + X &= \left(X + \frac{1 + i\sqrt{3}}{2} \right) \left(X + \frac{1 - i\sqrt{3}}{2} \right), \\ X^2 + 1 - X &= \left(X - \frac{1 + i\sqrt{3}}{2} \right) \left(X - \frac{1 - i\sqrt{3}}{2} \right), \\ X^2 + 1 + \sqrt{3}X &= \left(X + \frac{\sqrt{3} - i}{2} \right) \left(X + \frac{\sqrt{3} + i}{2} \right), \\ X^2 + 1 - \sqrt{3}X &= \left(X - \frac{\sqrt{3} - i}{2} \right) \left(X - \frac{\sqrt{3} + i}{2} \right). \end{aligned}$$

Then

$$P = \left(X + \frac{1 + i\sqrt{3}}{2}\right) \left(X + \frac{1 - i\sqrt{3}}{2}\right) \left(X - \frac{1 + i\sqrt{3}}{2}\right) \left(X - \frac{1 - i\sqrt{3}}{2}\right) \\ \times \left(X + \frac{\sqrt{3} - i}{2}\right) \left(X + \frac{\sqrt{3} + i}{2}\right) \left(X - \frac{\sqrt{3} - i}{2}\right) \left(X - \frac{\sqrt{3} + i}{2}\right).$$

2. Decompose $P = X^5 + 1$ into irreducible factors in $\mathbb{R}[X]$ and in $\mathbb{C}[X]$.

a In $\mathbb{C}[X]$. We will search for the complex roots of the form $e^{i\theta}$, as follows

$$\left(e^{i\theta}\right)^5 + 1 = 0 \iff e^{i5\theta} = -1 = e^{i(2k+1)\pi}, k \in \mathbb{Z}.$$

We can choose

$$5\theta = (2k+1)\pi, k \in \mathbb{Z} \iff \theta = \frac{\pi}{5} + \frac{2k\pi}{5}.$$

Which implies,

$$\alpha_1 = e^{i\frac{\pi}{5}}, \ \alpha_2 = e^{i\frac{3\pi}{5}}, \ \alpha_3 = e^{i\frac{5\pi}{5}} = -1, \ \alpha_4 = e^{i\frac{7\pi}{5}}, \ \alpha_5 = e^{i\frac{9\pi}{5}}.$$

So, the factorization of $X^5 + 1$ is

$$X^{5} + 1 = (X+1)\left(X - e^{i\frac{\pi}{5}}\right)\left(X - e^{i\frac{3\pi}{5}}\right)\left(X - e^{i\frac{7\pi}{5}}\right)\left(X - e^{i\frac{9\pi}{5}}\right).$$

b In $\mathbb{R}[X]$: According to the previous method on \mathbb{C} , we have

$$\alpha_1 = \overline{\alpha_5}, \ \alpha_2 = \overline{\alpha_4}, \ \alpha_3 = e^{i\pi} = -1,$$

then

$$\begin{aligned} X^{5}+1 &= (X+1) \left(X-\overline{\alpha_{5}} \right) \left(X-\alpha_{5} \right) \left(X-\overline{\alpha_{4}} \right) \left(X-\alpha_{4} \right) \\ &= (X+1) \left(X^{2}-\left[\alpha_{5}+\overline{\alpha_{5}} \right] X+\overline{\alpha_{5}} \alpha_{5} \right) \left(X^{2}-\left[\alpha_{4}+\overline{\alpha_{4}} \right] X+\overline{\alpha_{4}} \alpha_{4} \right) \\ &= (X+1) \left(X^{2}-2 \cos \left(\frac{\pi}{5} \right) X-1 \right) \left(X^{2}-2 \cos \left(\frac{3\pi}{5} \right) X-1 \right). \end{aligned}$$

Then $X^5 + 1$ is reducible in \mathbb{R}

4. Rational fractions

- A rational fraction in \mathbb{K} is written $F = \frac{P}{Q}$, where P and Q are polynomials in \mathbb{K} , with $Q \neq 0$.
- We say that the representative $\frac{P}{Q}$ of F is irreducible, if the polynomials P and Q are coprime.
- Every rational fraction has a unique irreducible representative

• Exemples 4.1 :
1
$$E X^5 - X^4 + 5$$

1.
$$F = \frac{X^3 - X^4 + 5}{X^3 - 3X + 2}$$

2. The rational fraction $F = \frac{X^4 - X^2}{X^2 - 3X + 2}$, accept an irreducible form $F = \frac{X^2(X+1)}{X-2}$

4.0.1 Roots and poles of a rational fraction

- We call roots (zeros) of the rational fraction $F = \frac{P}{Q}$ (supposed to be irreducible) the roots of the numerator P, and poles the roots of the denominator Q.
- We call degree of the rational fraction $F = \frac{P}{Q}$ the relative integer:

$$\deg\left(\frac{P}{Q}\right) = \deg P - \deg Q$$

• Exemples 4.2 The rational fraction $F = \frac{X^4 - X^2}{X^2 - 3X + 2}$, accept the roots 0, 1, -1 and accept the poles 1, 2.

4.0.2 Decomposition into simple elements

Définition 4.0.1 We say that $\frac{P}{Q}$ with $P \times Q \neq 0$ is a simple element iff deg $P < \deg Q$, gcd (P,Q) = 1, Q is an irreducible polynomial.

Simple element in $\ensuremath{\mathbb{C}}$:

A simple element in \mathbb{C} is a fraction of the form $\frac{b}{(X-\alpha)^n}$, where $a \in \mathbb{C}^*, b \in \mathbb{C}$ and $n \in \mathbb{N}^*$.

Simple element in \mathbb{R} :

A simple element in \mathbb{R} is a fraction which can have one of the following forms:

- 1. $\frac{b}{(X-\alpha)^n}$, where $a \in \mathbb{R}^*, b \in \mathbb{R}$ and $n \in \mathbb{N}$.
- 2. $\frac{aX+a}{(X+\alpha X+\beta)^n}$ where $a, b, \alpha, \beta \in \mathbb{R}$ and $\alpha^2 4\beta < 0$, and a, b non-zero at the same
- Exemples 4.3 1. $\frac{5-i}{(X-2)^3}$, $\frac{i}{X+3i}$ are simple elements in \mathbb{C}
 - 2. $\frac{7}{(X+2)^3}$, $\frac{5}{X+3}$ are simple elements in \mathbb{C} and in \mathbb{R} . 3. $\frac{2X}{(X^2+X+5)^6}$, $\frac{4}{(X^2-4X+7)^2}$, $\frac{X-3}{X^2+3X+5}$ are simple elements in \mathbb{R} .

General method of decomposition

• A rational fraction, of irreducible form $F = \frac{P}{Q}$, with deg $P \ge \deg Q$, is written uniquely, in the form:

$$F = E + \frac{R}{Q}$$
 with deg $R < \deg Q$.

E is the integer part and $\frac{R}{Q}$ the fractional part of *F*.

Exemples 4.4 :

$$\frac{X^3 + X^2 + 1}{X^2 + 1} = X + 1 + \frac{-X}{X^2 + 1}.$$

Theorem 4.0.1 Let $\frac{R}{Q}$ with deg $R < \deg Q$ a rational fraction. Suppose $Q = Q_1 Q_2$ with $gcd(Q_1,Q_2) = 1$. There exists a unique pair (R_1,R_2) of polynomials such that:

$$\frac{R}{Q} = \frac{R_1}{Q_1} + \frac{R_2}{Q_2}, \text{ with } \deg R_1 < \deg Q_1 \text{ and } \deg R_2 < \deg Q_2.$$

• Exemples 4.5 $F(X) = \frac{X}{(X-1)(X-2)} = \frac{-1}{X-1} + \frac{2}{X-2} \cdot (\text{in } \mathbb{R}[X])$

Corollary 4.0.2 Any rational fraction $\frac{R}{Q}$ with deg $R < \deg Q$, acceptting a pole of order m is uniquely decomposed into:

$$\frac{R}{Q} = \frac{R}{(X-\alpha)^m Q_2} = \frac{R_1}{(X-\alpha)^m} + \frac{R_2}{Q_2}, \text{ with } \deg R_1 < m \text{ and } \deg R_2 < \deg Q_2.$$

The term $\frac{R_1}{(X-\alpha)^m}$ is called the **polar part** of $\frac{R}{Q}$ relative to the pole α

Exemples 4.6 $F(X) = \frac{2X^3 + 3X^2 + 2X}{(X+1)^2 (X^2 + X+1)} = \frac{X}{(X+1)^2} + \frac{X}{X^2 + X+1} \cdot (\text{in } \mathbb{R}[X])$

Theorem 4.0.3 Let $\frac{R}{(X-\alpha)^m}$, with deg R < m, a polar part of a pole α . There are unique constants (c_1, c_2, \cdots, c_m) such that:

$$\frac{R}{(X-\alpha)^m} = \sum_{k=1}^m \frac{c_k}{(X-\alpha)^k}.$$

• Exemples 4.7 $F(X) = \frac{7X-4}{(X-1)^2} = \frac{7}{X-1} + \frac{3}{(X-1)^2} \cdot (\text{in } \mathbb{R}[X])$

Corollary 4.0.4 Let $Q = \prod_{i=1}^{p} (X - \alpha_i)^{m_i}$ a polynomial. Any rational fraction with denominator Q and strictly negative degree is uniquely decomposed into:

$$\frac{R}{Q} = \sum_{i=1}^{p} \frac{R_i}{(X - \alpha_i)^{m_i}} \text{ with } \forall i \in \overline{1, P} \text{ deg } R_i < m_i.$$

4.0.3 Practical examples

■ Exemples 4.8 :

Research for the polar parts of the rational fraction:

$$F = \frac{X(X^{2}+1)^{2}}{(X^{2}-1)^{2}}$$

Extract the entire part:

$$\frac{X(X^2+1)^2}{(X^2-1)^2} = X + \frac{4X^3}{(X^2-1)^2} = X + \frac{4X^3}{(X+1)^2(X-1)^2}.$$
(4.1)

Decomposition the fraction $G(X) = \frac{4X^3}{(X^2-1)^2}$ into simple elements,

1. 1st Method: We have

$$\frac{4X^3}{\left(X^2-1\right)^2} = \frac{4X^3}{\left(X+1\right)^2 \left(X-1\right)^2}.$$

Applying Euclid's algorithm to polynomials $(X + 1)^2$ and $(X - 1)^2$:

$$(X+1)^2 = (X-1)^2 + 4X = X(X-2) + 1,$$

then

$$I = (X-1)^2 \frac{X+2}{4} - (X+1)^2 \frac{X-2}{4}.$$

We deduce

$$\frac{1}{\left(X^2-1\right)^2} = \frac{X+2}{4\left(X+1\right)^2} - \frac{X-2}{4\left(X-1\right)^2}.$$

Then

$$\frac{4X^3}{\left(X^2-1\right)^2} = \frac{X^4+2X^3}{\left(X+1\right)^2} - \frac{X^4-2X^3}{\left(X-1\right)^2}.$$

Calculating the integer part of the two terms:

$$\frac{4X^3}{(X^2-1)^2} = \frac{X^4 + 2X^3 + X^2 - X^2}{(X+1)^2} - \frac{X^4 - 2X^3 + X^2 - X^2}{(X-1)^2}$$
$$= \frac{X^2(X+1)^2 - X^2}{(X+1)^2} - \frac{X^2(X-1)^2 - X^2}{(X-1)^2}$$
$$= X^2 - \frac{X^2}{(X+1)^2} - X^2 + \frac{X^2}{(X-1)^2}$$
$$= \frac{X^2}{(X-1)^2} - \frac{X^2}{(X+1)^2}$$
$$= \frac{X^2 - 2X + 1 + 2X - 1}{(X-1)^2} - \frac{X^2 + 2X + 1 - 2X - 1}{(X+1)^2}$$
$$= 1 + \frac{2X - 1}{(X-1)^2} - 1 + \frac{2X + 1}{(X+1)^2}$$
$$= \frac{2X - 1}{(X-1)^2} + \frac{2X + 1}{(X+1)^2}.$$

So:

$$F = X + \frac{2X - 1}{(X - 1)^2} + \frac{2X + 1}{(X + 1)^2}$$

Decomposition of the polar parts found in the previous example:

$$2X + 1 = 2(X + 1) - 1$$
; hence $\frac{2X + 1}{(X + 1)^2} = \frac{2}{X + 1} + \frac{-1}{(X + 1)^2}$,

and

$$2X - 1 = 2(X - 1) + 1$$
; hence $\frac{2X - 1}{(X - 1)^2} = \frac{2}{X - 1} + \frac{1}{(X - 1)^2}$.

Finally

$$F = X + \frac{2}{X-1} + \frac{1}{(X-1)^2} + \frac{2}{X+1} + \frac{-1}{(X+1)^2}.$$

2. 2^{nd} Method:

The fraction G accepts a decomposition of the form:

$$G(X) = \frac{a}{X+1} + \frac{b}{(X+1)^2} + \frac{c}{X-1} + \frac{d}{(X-1)^2}$$

• Note that G is odd and compare the decompositions of G(-X) and -G(X):

$$G(-X) = \frac{-a}{X-1} + \frac{b}{(X-1)^2} + \frac{-c}{X+1} + \frac{a}{(X+1)^2}$$
$$-G(X) = \frac{-a}{X+1} + \frac{-b}{(X+1)^2} + \frac{-c}{X-1} + \frac{-d}{(X-1)^2}$$

Then

$$G(-X) = -G(X) \Rightarrow \begin{cases} a = c \\ b = -d \end{cases}.$$

• For find *b*, we multiply G by $(X+1)^2$

$$(X+1)^2 G = \frac{4X^3}{(X-1)^2} = a(X+1) + b + \frac{c(X+1)^2}{X-1} + \frac{d(X+1)^2}{(X-1)^2}$$

By replacing X with -1, we obtain b = -1, then d = 1. This method makes it possible to find the coefficient of the highest degree term of each polar part.

• For find the coefficients *a* and *c*, we multiply *G* by *X*:

$$XG(X) = \frac{4X^4}{(X-1)^2} = \frac{aX}{X+1} + \frac{bX}{(X+1)^2} + \frac{cX}{X-1} + \frac{dX}{(X-1)^2}$$

By research for the limit of XG(X) in $+\infty$, we obtain:

$$\lim_{x \to +\infty} xG(x) = 4 = a + c, \text{ then } a = c = 2.$$

This method makes it possible to find the sum of the lowest degree coefficients of all the polar parts. Eventually, we obtain: (a, b, c, d) = (2, -1, 2, 1).

$$G = \frac{2}{X-1} + \frac{1}{\left(X-1\right)^2} + \frac{2}{X+1} + \frac{-1}{\left(X+1\right)^2}.$$

■ Exemples 4.9 :

Decomposition into simple elements

$$F = \frac{X^3 + 1}{(X - 2)^4}.$$

By divide successively on X - 2:

$$X^{3} + 1 = (X - 2)(X^{2} + 2X + 4) + 9$$

$$\Rightarrow \frac{X^{3} + 1}{(X - 2)^{4}} = \frac{X^{2} + 2X + 4}{(X - 2)^{3}} + \frac{9}{(X - 2)^{4}},$$

and

$$X^{2} + 2X + 4 = (X - 2)(X + 4) + 12$$

$$\Rightarrow \frac{X^{2} + 2X + 4}{(X - 2)^{3}} = \frac{X + 4}{(X - 2)^{2}} + \frac{12}{(X - 2)^{3}},$$

and

$$X+4 = (X-2)+6 \quad \frac{X+4}{(X-2)^2} = \frac{1}{(X-2)} + \frac{6}{(X-2)^3}.$$

Finally,

$$F = \frac{1}{X-2} + \frac{6}{(X-2)^3} + \frac{12}{(X-2)^3} + \frac{9}{(X-2)^4}.$$

• Exemples 4.10 : In $\mathbb{C}[X]$.

$$F = \frac{3X+1}{X^2+1} = \frac{a}{X-i} + \frac{b}{X+i}$$

Multiply both sides of the equality by (X - i) and replacing X by *i*, we obtain $a = \frac{3-i}{2}$. Multiply both sides of the equality by (X + i) and replacing X by *-i*, we obtain $b = \frac{3+i}{2}$. We conclude,

$$F = \frac{3X+1}{X^2+1} = \frac{3-i}{2(X+i)} + \frac{3+i}{2(X-i)}$$

4.0.4 Practical decomposition methods

Study plan:

- a We put $F = \frac{P}{Q}$ in irreducible form by simplifying by the *GCD* of the numerator *P* and the denominator *Q*.
- b We obtain E and R using the Euclidean division of P by Q.
- c We factor *B* into irreducible polynomials.
- d We write the literal form of the decomposition into simple elements of F, or of $\frac{P}{Q}$.
- e We determine the coefficients using various methods.

4.1 Exercises solved

Ex	cerc 1.	ise Fir	4. nd 1	1.1 :he	po	lyn	om	ial	s P	of	de	gre	e 3	, sı	ıch	tha	at										
				P((0)		1, P	P(1)) =	·	1, F	P (-	1)	= <i>′</i> .	3, <i>F</i>	P(2)) =	5.									
							<i>.</i>				<i>`</i>	`			,								-				
	2.	Un	ide	r w	hat	t co	ond	itic	on (on	a, l	b, c	$\in C$	R,	the	pc	olyr	non	nia	X	4 +	- a)	ζ^2 .	+b	Χ-	+c	is
		div	visi	ble	by	X	$^{2}+$	Χ-	-2	?																	
	3.	Fir	nd 1	the	po	lyn	om	ial	s o	f de	egro	ee í	2 si	ıch	th	at I	P′ d	ivi	des	Р.							
	4.	(T	P)	Fin	nd t	he	pol	vn	om	ials	SP	of	des	gree	e 3.	su	ch	tha	t								
		Ì					1	5							Í												
				P((0)	= () ar	nd .	P(X	K +	1)		P(Z	() =	$= \lambda$	(2^{2})											
									_																		
	5.	Th	e f	ollo	owi	ng	sta	ten	nen	its a	are	tru	e c	r fa	alse	:											
		(;	a) .	Αţ	ooly	ync	omi	al (of c	leg	ree	3 i	s a	lwa	ays	rec	luc	ible	e in	\mathbb{R}	[X]						
		(1)	Рi	s ir	red	luci	ble	e in	R[X],	if	anc	l ar	ily	if c	leg	<i>P</i> =	= 1	•							
		(c)	Αŗ	ooly	ync	mi	al I	$P \in$	\mathbb{R}	[X]	of	de	gre	e 5	ac	cep	t af	t le	ast	on	e re	eal	roc	ot.		
		Ň	,	-													1										

Solution:

2. $P = aX^3 + bX^2 + cX + d$ where a, b, c and d satisfy the following equations: $\begin{pmatrix}
 d = 1 \\
 d = 1
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d$

$$\begin{cases} d = 1 \\ a+b+c+d = -1 \\ -a+b-c+d = 3 \\ 8a+4b+2c+d = 5 \end{cases}$$

then,

$$P = \frac{4}{3}X^3 - \frac{10}{3}X + 1.$$

3. The rest of the division of $X^4 + aX^2 + bX + c$ by $X^2 + X - 2$ is

R = (b - a - 5)X + 2a + c + 6.

For it to be zero it is necessary that

b = a + 5 and c = -2a - 6.

4. The rest of the division of $P = aX^2 + bX + c$ by P' = 2aX + b is

$$R = c - \frac{b^2}{4a}.$$

So the condition is

$$4ac = b^2$$

- 5. (**TP**) $P = \frac{1}{3} (X^3 2X^2 + X)$.
- 6. True or False
 - (a) Is true, because the degree of P is odd number.
 - (b) $(\deg P = 1) \Rightarrow (P \text{ is irreducible in } \mathbb{R}[X])$, is true. And (*P* is irreducible in $\mathbb{R}[X]$) $\Rightarrow (\deg P = 1)$, is false.
 - (c) Is true. because the graph of polynomial of degree odd always pass by the axis (Ox).

D -			4	1 2		I.	4 41-		- 1 -			.1.7	\mathbf{v}		v	8 .	\mathbf{v}	4 .	1					
EX	erc	ise	4.	1.2		Le	t th	e p	ory	no	mi	ai r	$(\Lambda$) =	= Λ	~ 	$\cdot \Lambda$	+	1					
	1	Ch	~~~	+la	t I	2.4		-	+	1		- 1		to.										
	1.	211	0w	una	at I	- u	ves	по	t a	um	IL I	ear	100	ns.										
	2	р:			•	. 1		-1-		1		: 1	- C	TTD [\mathbf{v}									
	Ζ.	P_1	S 11	an	l 1rr	ea	uci	ble	ро	iyn	on	nai	01		$X \mid .$									
									-	-				-	-									

Solution:

1. We consider the function

$$X \longmapsto P(X) = X^8 + X^4 + 1.$$

So, we have

$$P'(X) = 8X^7 + 4X^3 = X^3 (8X^4 + 4),$$

then,

$$P'(X) = 0 \Leftrightarrow X^3 \left(8X^4 + 4 \right) = 0 \Longrightarrow X = 0.$$

Since, P(0) = 1 > 0, then graph of P(X) does not pass by the axis (*Ox*).

2. As P does not accept any real root but it is of degree 8, then it is the product of polynomials of degree 2, therefore it is reducible from $\mathbb{R}[X]$.

Eve	rc	ise	4	1 3	χ.	(σ	rd o	of r		mo	mi	alc														
LIAU	Ľ	190	т.	1	•	18	u	μh	(OI)	110	1111	ais	,													
1			tor	m	ina	tha	ת	_ (red	th	$-\mathbf{f}$	110		na i	no1	un	h	10								
1	•				ine i	inc	ν	<u> </u>	şcu	un	- 10	лю	WI	ng .	por	ym	JIII	ais	•							
		(<u>)</u>	Λ	-v	-3	V	2	V	2	or	11	P	v	5	γv	r4 _ا	V	2	V	2	,				
		- C	a)	А	$-\Lambda$		Λ		Λ	<u> </u>	ai	iu 1) —	Λ		$\Delta \Lambda$		$^{-}\Lambda$		Λ	<u> </u>	',				
		(1	2	Λ	$\perp v$	5	21	v 4	ιī	73	v	2	21	7 1	1.	nd	D	_ 1	v 4	1 2	v^3	1	V	2		
		_ (I))	А	$-\Lambda$		$-J_{2}$	ι.	$\perp \Lambda$		$\neg \Lambda$		JZ	r +	10	anu	. D	- 1	<i>1</i> .	T 2	Λ	T -	<u>n</u> 1	- 2.		
2		Ei	h	TT	and	V	\mathbf{of}	ha	nr	N.	110	ת	011	ah	tha	+ A	I T	D	V-	_ <i>т</i>	•					
2	•	ГΠ	IU	\boldsymbol{U}	anu	V	01	ne	pre		Jus	D,	, su	CII	ulla	ιA	U -	$\neg D$	<i>V</i> -	= L	<i>)</i> .					

Solution:

- 1. The gcd of polynomials:
 - (a) gcd(A,B) = X 2,
 - (b) $gcd(A,B) = X^3 + 1$.
- 2. Determination of U and V such that AU + BV = D:
 - (a) $A\left(-\frac{2}{3}X \frac{1}{3}\right) + B\left(\frac{2}{3}X^3 \frac{1}{3}X^2 \frac{1}{3}X + \frac{4}{3}\right) = X 2,$ (b) $A(-1) + B(X+1) = X^3 + 1.$

Solution:

- 1. The polynomials *P* and *Q* are irreducibles in $\mathbb{R}[X]$ and in $\mathbb{C}[X]$, See the exercices 1 and 2
- 2. Decompose $P = X^8 + X^4 + 1$ into irreducible factors in $\mathbb{R}[X]$, in $\mathbb{C}[X]$.

a) In $\mathbb{R}[X]$, we have

$$X^{8} + X^{4} + 1 = (X^{4} + 1)^{2} - X^{4} = (X^{4} + 1 + X^{2})(X^{4} + 1 - X^{2})$$

also

$$\begin{array}{rcl} (X^4+1+X^2) &=& (X^2+1)^2-X^2=(X^2+1+X)(X^2+1-X)\\ & \text{and}\\ X^4-X^2+1 &=& (X^2+1)^2-3X^2=(X^2+1+\sqrt{3}X)(X^2+1-\sqrt{3}X),\\ \end{array}$$
 Then

$$P = (X^{2} + X + 1)(X^{2} - X + 1)(X^{2} + \sqrt{3}X + 1)(X^{2} - \sqrt{3}X + 1).$$

b) In $\mathbb{C}[X]$, we can search for the roots of P in $\mathbb{C}[X]$, we have $X^{2} + 1 + X = \left(X + \frac{1 + i\sqrt{3}}{2}\right) \left(X + \frac{1 - i\sqrt{3}}{2}\right),$ $X^{2} + 1 - X = \left(X - \frac{1 + i\sqrt{3}}{2}\right) \left(X - \frac{1 - i\sqrt{3}}{2}\right),$ $X^{2} + 1 + \sqrt{3}X = \left(X + \frac{\sqrt{3} - i}{2}\right) \left(X + \frac{\sqrt{3} + i}{2}\right),$ $X^{2} + 1 - \sqrt{3}X = \left(X - \frac{\sqrt{3} - i}{2}\right) \left(X - \frac{\sqrt{3} + i}{2}\right).$ Then

$$P = \left(X + \frac{1 + i\sqrt{3}}{2}\right) \left(X + \frac{1 - i\sqrt{3}}{2}\right) \left(X - \frac{1 + i\sqrt{3}}{2}\right) \left(X - \frac{1 - i\sqrt{3}}{2}\right)$$
$$\times \left(X + \frac{\sqrt{3} - i}{2}\right) \left(X + \frac{\sqrt{3} + i}{2}\right) \left(X - \frac{\sqrt{3} - i}{2}\right) \left(X - \frac{\sqrt{3} + i}{2}\right).$$

3. Decompose Q = X⁵ + 1 into irreducible factors in R[X] and in C[X].
a) In C[X]. We will search for the complex roots of the form e^{iθ}, as follows

$$\left(e^{i\theta}\right)^5 + 1 = 0 \iff e^{i5\theta} = -1 = e^{i(2k+1)\pi}, k \in \mathbb{Z}.$$

We can choose

$$5\theta = (2k+1)\pi, k \in \mathbb{Z} \iff \theta = \frac{\pi}{5} + \frac{2k\pi}{5}.$$

Which implies,

$$\alpha_1 = e^{i\frac{\pi}{5}}, \ \alpha_2 = e^{i\frac{3\pi}{5}}, \ \alpha_3 = e^{i\frac{5\pi}{5}} = -1, \ \alpha_4 = e^{i\frac{7\pi}{5}}, \ \alpha_5 = e^{i\frac{9\pi}{5}}.$$

So, the factorization of $X^5 + 1$ is

$$X^{5} + 1 = (X+1)\left(X - e^{i\frac{\pi}{5}}\right)\left(X - e^{i\frac{3\pi}{5}}\right)\left(X - e^{i\frac{7\pi}{5}}\right)\left(X - e^{i\frac{9\pi}{5}}\right).$$

b) In $\mathbb{R}[X]$: According to the previous method on \mathbb{C} , we have

$$\alpha_1 = \overline{\alpha_5}, \ \alpha_2 = \overline{\alpha_4}, \ \alpha_3 = e^{i\pi} = -1,$$

then

$$\begin{aligned} X^{5} + 1 &= (X+1) \left(X - \overline{\alpha_{5}} \right) \left(X - \alpha_{5} \right) \left(X - \overline{\alpha_{4}} \right) \left(X - \alpha_{4} \right) \\ &= (X+1) \left(X^{2} - \left[\alpha_{5} + \overline{\alpha_{5}} \right] X + \overline{\alpha_{5}} \alpha_{5} \right) \left(X^{2} - \left[\alpha_{4} + \overline{\alpha_{4}} \right] X + \overline{\alpha_{4}} \alpha_{4} \right) \\ &= (X+1) \left(X^{2} - 2\cos\left(\frac{\pi}{5}\right) X - 1 \right) \left(X^{2} - 2\cos\left(\frac{3\pi}{5}\right) X - 1 \right). \end{aligned}$$

Then $X^5 + 1$ is reducible in $\mathbb{R}[X]$.

$$X^{5} + 1 = (X+1)\left(X^{2} - 2\cos\left(\frac{\pi}{5}\right)X - 1\right)\left(X^{2} - 2\cos\left(\frac{3\pi}{5}\right)X - 1\right).$$

Ex	erc	eise	4.	1.5	:	Le	t A	an	d <i>B</i>	be	t v	vo	pol	yn	om	ails	s su	ch	tha	ıt :					
		A(X)	=	X^5	+2	X ⁴ .	- 3	X^3	′	$3X^2$	2+	2X	+	2 :	and	B	(X)) =	X	³ +	1.			
		((/						
	1.	Sh	ow	th	at (X -	+ 1) di	ivic	les	A(X)													
	2.	Fa	ctc	r A	an	d <i>E</i>	or 8	$\hat{\mathbf{n}} \mathbb{R}$	[X]	, 0	n Ĉ	$\mathbb{Z}[X]$	1.												
	3.	De	etei	mi	ne	the	D	= 8	gcd	(A)	B)														

Solution:

1. Show that (X + 1) divise A(X).

$$(X+1)$$
 divise $A(X) \iff (-1)$ is a root of $A(X) \iff A(-1) = 0$.

Then $A(-1) = (-1)^5 + (-1)^4 - 3(-1)^3 - 3(-1)^2 + 2(-1) + 2 = 0$, so (X + 1) divise A(X).

- 2. Factor A and B on $\mathbb{R}[X]$, on $\mathbb{C}[X]$.
 - (a) Factorization of A(X): A is divisible by (X + 1) then by Euclidean division of A on (X + 1) we obtain the quotient $Q(X) = X^4 - 3X^2 + 2$. we assume $Y = X^2$, then $Q(Y) = Y^2 - 3Y + 2$. Calculation: Δ : $\Delta = 1$, then the roots of Q(Y) are $Y_1 = 1$ and $Y_2 = 2$. so $Q_1(Y) = (Y - 1)(Y - 2)$. Donc $Q(X) = (X^2 - 1)(X^2 - 2)$. Also

$$X^{2} - 1 = (X - 1)(X + 1) \text{ and } X^{2} - 2 = (X - \sqrt{2})(X + \sqrt{2}).$$

Finally the factorization of *A* on $\mathbb{R}[X]$ and $\mathbb{C}[X]$ is:

$$A(X) = (X+1)^2 (X-1) (X-\sqrt{2}) (X+\sqrt{2}).$$

(b) Factorization of B(X):

We note (-1) is a root of B(X), then by Euclidean division of B on (X + 1) we obtain the quotient $K(X) = X^2 - X + 1$. Calculation: Δ : $\Delta = -3$, then the roots of K(X) in $\mathbb{C}[X]$ are $X_1 = \frac{1+i\sqrt{3}}{2}$ and $X_2 = \frac{1-i\sqrt{3}}{2}$. So $K(X) = \left(X - \frac{1+i\sqrt{3}}{2}\right) \left(X - \frac{1-i\sqrt{3}}{2}\right)$. Finally the factorization of *B* on $\mathbb{C}[X]$ is

$$B(X) = (X+1)\left(X - \frac{1 + i\sqrt{3}}{2}\right)\left(X - \frac{1 - i\sqrt{3}}{2}\right).$$

And the factorization of *B* on $\mathbb{R}[X]$ is

$$B(X) = (X+1) (X^2 - X + 1).$$

3. Determine the D = gcd(A, B): According to the factorizations of A and B:

$$A(X) = A(X) = (X+1)^{2} (X-1) \left(X - \sqrt{2}\right) \left(X + \sqrt{2}\right).$$

$$B(X) = (X+1)(X^2 - X + 1).$$

We obtain

$$D = \gcd(A, B) = X + 1.$$

Exercise 4.	1.6:											
1. Decor	mpose t	he follow	ing fr	actions	into	simple	e elen	nents i	n R[X], a	nd	in
$\mathbb{C}[X]$	-		-			-				1		
$\mathbb{C}[\Lambda].$		\mathbf{v}^2	\mathbf{v} \perp 1									
	$F_0(X)$	$=$ $\frac{\Lambda}{}$	$-\Lambda + 1$	-,								
		(X	$(-1)^{3}$									
		$3X^3$	$+X^{2}$ -	+X + 1	-							
	$F_1(X)$	= $ X$	$x^2 - 3X$	(+2)	-,							
			2X	$^{4} + 1$								
	$F_2(X)$	$=$ $\frac{1}{\mathbf{V}(\mathbf{x})}$	z 1)3	(1)	XZ + 1	<u>,</u> ,						
			$(-1)^{-1}$	$(X^{2} + $	X + 1	L)						
	$E_2(\mathbf{X})$	$- X^2 -$	-1 (1	'P)								
	$I_3(\Lambda)$	X ⁴ -	-1	•								
2. Calcu	late the	tollowing	, integr	al								
	<i>c</i> 4											
	$\int F_1(z)$	(X) dx.										
	J3											

Solution:

1. Decompose $F_0(X)$ into simple elements in $\mathbb{R}[X]$, and in $\mathbb{C}[X]$.

$$F_0(X) = \frac{X^2 + X + 1}{(X - 1)^3}.$$

 (1^{st}) . Decomposition: Determine a, b, and c of the real numbers such that

$$\frac{X^2 + X + 1}{\left(X - 1\right)^3} = \frac{a}{X - 1} + \frac{b}{\left(X - 1\right)^2} + \frac{c}{\left(X - 1\right)^3}$$

then

$$(X-1)^{3} F_{0}(X) = X^{2} + X + 1$$

= $a(X-1)^{2} + b(X-1) + c \xrightarrow{\text{For } X=1} c = 3,$

and

$$\frac{X^2 + X + 1}{(X-1)^3} = \frac{aX^2 + (b-2a)X + a - b + 3}{(X-1)^3} \Rightarrow \begin{cases} a=1\\b=3 \end{cases}.$$

Finally,

$$\frac{X^2 + X + 1}{\left(X - 1\right)^3} = \frac{1}{X - 1} + \frac{3}{\left(X - 1\right)^2} + \frac{3}{\left(X - 1\right)^3}.$$

2. Decompose $F_1(X)$ into simple elements in $\mathbb{R}[X]$, and in $\mathbb{C}[X]$.

$$F_1(X) = \frac{3X^3 + X^2 + X + 1}{X^2 - 3X + 2}.$$

(1st). Determination of the integer part: by using Euclidean division of $3X^3 + X^2 + X + 1$ by $X^2 - 3X + 2$, we obtain

$$\frac{3X^3 + X^2 + X + 1}{X^2 - 3X + 2} = 2X + 7 + \frac{16X - 13}{X^2 - 3X + 2}$$

 (2^{nd}) . Denominator factorization: Factor the polynomial $X^2 - 3X + 2$ in \mathbb{R}

$$X^{2} - 3X + 2 = (X - 1)(X - 2)$$

 (3^{rd}) . Decomposition: Determine *a* and *b* of the real numbers such that

$$\frac{16X - 13}{X^2 - 3X + 2} = \frac{a}{X - 1} + \frac{b}{X - 2}.$$

Multiply both sides of the equality by (X - 1), we have

$$\frac{16X - 13}{X - 2} = a + \frac{b(X - 1)}{X - 2},$$

for X = 1, we obtain a = -3. And also,

$$(X-2)\frac{16X-13}{X^2-3X+2} = \frac{16X-13}{X-1} = \frac{a(X-2)}{X-1} + b,$$

for X = 2, we obtain b = 19. Finally,

$$\frac{3X^3 + X^2 + X + 1}{X^2 - 3X + 2} = 2X + 7 + \frac{-3}{X - 1} + \frac{19}{X - 2}.$$
(4.2)

3. Decompose $F_2(X)$ into simple elements in $\mathbb{R}[X]$, and in $\mathbb{C}[X]$.

(a) In $\mathbb{R}[X]$:

$$F_{2}(X) = \frac{2X^{4} + 1}{X(X - 1)^{3}(X^{2} + X + 1)}.$$

 (1^{st}) Decomposition: Determine *a*, *c* and *b* of the real numbers such that

$$F_2(X) = \frac{a}{X} + \frac{b}{(X-1)^3} + \frac{cX+d}{X^2+X+1},$$

then

$$\begin{aligned} XF_2(X) &= \frac{2X^4 + 1}{(X-1)^3 (X^2 + X + 1)} \\ &= a + \frac{bX}{(X-1)^3} + \frac{cX^2 + dX}{X^2 + X + 1} \xrightarrow{\text{For } X = 0} a = 1, \\ (X-1)^3 F_2(X) &= \frac{2X^4 + 1}{X (X^2 + X + 1)} \\ &= \frac{(X-1)^3}{X} + b + \frac{(cX+d) (X-1)^3}{X^2 + X + 1} \xrightarrow{\text{For } X = 1} b = 1, \\ (X^2 + X + 1) F_2(X) &= \frac{2X^4 + 1}{X (X-1)^3} \\ &= \frac{(X^2 + X + 1)}{X} + \frac{(X^2 + X + 1)}{(X-1)^3} + cX + d \xrightarrow{\text{For } X = -1}_{\text{and } X = 2} \begin{cases} c = \frac{3}{2}, \\ d = 3 \end{cases}. \end{aligned}$$

Finally,

$$F_2(X) = \frac{1}{X} + \frac{1}{(X-1)^3} + \frac{\frac{3}{2}X+3}{(X^2+X+1)}.$$

(b) In $\mathbb{C}[X]$: We have

$$X^{2} + X + 1 = \left(X + \frac{1 + i\sqrt{3}}{2}\right) \left(X + \frac{1 - i\sqrt{3}}{2}\right).$$

 (1^{st}) Decomposition: Determine *d*, and *e* of the real numbers such that

$$\frac{\frac{3}{2}X+3}{X^2+X+1} = \frac{d}{X+\frac{1+i\sqrt{3}}{2}} + \frac{e}{X+\frac{1-i\sqrt{3}}{2}}$$
$$= \frac{(d+e)X + \frac{1}{2}(d+e+(e-d)i\sqrt{3})}{X^2+X+1},$$

By identification we find

$$e+d=\frac{3}{2}$$
, and $e-d=\frac{-3\sqrt{3}}{2}i$,

then

$$d = \frac{3}{4} \left(1 + i\sqrt{3} \right)$$
, and $e = \frac{3}{4} \left(1 - i\sqrt{3} \right)$.

We conclude,

$$\frac{\frac{3}{2}X+3}{X^2+X+1} = \frac{3\left(1+i\sqrt{3}\right)}{4X+2(1+i\sqrt{3})} + \frac{3\left(1-i\sqrt{3}\right)}{4X+2(1-i\sqrt{3})}.$$

Finally

$$F_2(X) = \frac{1}{X} + \frac{1}{(X-1)^3} + \frac{3(1+i\sqrt{3})}{4X+2(1+i\sqrt{3})} + \frac{3(1-i\sqrt{3})}{4X+2(1-i\sqrt{3})}.$$

4. Calculate the integral

$$\int_{2}^{3} F_{1}(X) dx = \int_{3}^{4} \frac{3X^{3} + X^{2} + X + 1}{X^{2} - 3X + 2} dx,$$

according to (4.2) we find

$$\int_{3}^{\bar{4}} F_{1}(X) dx = \int_{3}^{4} \left(2X + 7 + \frac{-3}{X - 1} + \frac{19}{X - 2} \right) dx$$

= $\left[X^{2} + 7X - 3\ln(X - 1) + 19\ln(X - 2) \right]_{3}^{4}$
= $14 + \ln\left(\frac{2^{22}}{27}\right).$

4.1.1 Additional exercises

Ex	era	ise	4.	1.7		Le	t A	an	d <i>B</i>	be	ŧ١	NO	pol	yne	om	ails	s su	ch	tha	nt:					
													1	2											
		A(X)	_	X^5	+	χ ⁴ .	-X	-3 _	- 37	X^2	+2	2Х.	+2	ar	nd	B(X)	=	X ³	+ 1				
		(. –		. –			- (-	-)							
	1.	Sh	ow	th	at (<i>X</i> -	+1) di	vic	les	A(X)													
	2.	Fa	cto	r A	an	d <i>E</i>	or 8	$\hat{\mathbf{n}} \mathbb{R}$	[X]	, 0	n ($\mathbb{Z}[X]$	1.												
	3.	De	eter	mi	ne	the	D	= 5	gcd	(A.	B)	L	1												
										()															

E	xer	eise	4.	1.8		Ar	e tl	ne f	oll	ow	ing	pc	lvr	ion	nial	ls i	rreo	luc	ibl	e ir	\mathbf{r}	[X]	or	in	CĽ	X]?	
											2	r ·	- , -									[]			- [-	-1.	
		Р(X)	_	X^6	+ 1		$O^{(\cdot)}$	X)		X^{12}	_	1	R((X)	_	X ⁸	_ >	v 4	+ 1							
		• (()				,	2 (1	•)	1	-		-,		/	-		1	-								
Fa	icto	r th	ese	e po	olyı	non	nia	ls c	n I	$\mathbb{R}[X$	[]. (on	$\mathbb{C}[2]$	X].													
				1						L	7,		L	1													

4.1 Exercises solved

Exer	cise 4.1.9:	For n	$\in \mathbb{N}$, sho	ow that th	e polyno	mial	
	P(X) = i	$nX^{n+1} -$	(n+1)	K ⁿ ,			
is div	isible by ($(1-X)^2$					
Ever	rise 4 1 1(• (gcd	of poly	omials)			
Exer	cise 4.1.1 Determir	$\begin{array}{l} \textbf{b} : (\text{gcd}) \\ \textbf{b} : (\text{gcd}) \\ \textbf{b} : (\text{gcd}) \\ \textbf{c} : (\text{gcd}) \\$	of poly = gcd th	nomials) le followi	ng polyn	omials:	
Exerce	cise 4.1.1 Determin 1. $A =$ 2. $A =$	$\begin{array}{l} \textbf{0:} (\text{gcd}) \\ \textbf{ie the } D \\ \hline X^5 + X \\ \hline X^6 + X^6 \end{array}$	of polyi = gcd th $3^{3} + X + 4^{4} - X^{2} - 3^{4}$	nomials) e followi 1 and <i>B</i> = -1 and <i>B</i>	ng polyn = $X^4 + X^2$ = $X^3 - 4$	omials: $x^2 + 1$, x + 1.	

Final exam. 4.2

4.2.1 Exam 1.

Ex	erc	ise	4.	2.1	•	(05	5pt:	s) I	Let	p, c	q a	nd	r b	e tł	iree	e pr	юр	osi	tioi	ns r	nat	hei	nat	tics	•			
	1.	De	ter	miı	ne a	all	cas	es	for	wł	nicł	n th	e f	ollo	owi	ng	pro	ope	sit	ion	is	fal	se,	and	1 fi	nd	its	
		ne	gat	ion	•											U	-	-										
				,		```		,		<u>``</u>																		
				(<i>p</i>	\rightarrow	q)	\Rightarrow	(<i>r</i>	\Rightarrow	p)	•																	
	2.	C	hoc	ose	the	pr	oof	m	eth	od.	an	d p	oro	ve t	he	fol	lov	vin	g st	ate	me	ent:						
						•						-																
				$\forall n$	$i \in$	$\mathbb{Z},$	n ≠	0	\Rightarrow	2^n	+3	\neq	4.															

Solution:

Let p, q and r be three propositions mathematics.

• Find all cases for which the proposition $(p \Rightarrow q) \Rightarrow (r \Rightarrow p)$ is false, using the associated truth table

p	q	r	$p \Rightarrow q$	$r \Rightarrow p$	$(p \Rightarrow q) \Rightarrow (r \Rightarrow p)$
1	1	1	1	1	1
1	1	0	1	1	1
1	0	1	0	1	1
1	0	0	0	1	1
0	1	1	1	0	0
0	1	0	1	1	1
0	0	1	1	0	0
0	0	0	1	1	1

So the proposition $(p \Rightarrow q) \Rightarrow (r \Rightarrow p)$ is false in both cases:

- 1^{st} : p is false, q is false and r is true. (01) 2^{nd} : p is false, q is true and r is true. (01)
- Negation of the previous statement.

$$\overline{(p \Rightarrow q) \Rightarrow (r \Rightarrow p)} \Leftrightarrow (p \Rightarrow q) \land \overline{(r \Rightarrow p)}$$
$$\Leftrightarrow (p \Rightarrow q) \land (r \land \overline{p}).(01)$$

- The appropriate proof method and Prove
 - The appropriate proof method is contrapositive proof.(0.5)
 - Prove : (01.5)

$$\forall n \in \mathbb{Z}, n \neq 0 \Rightarrow 2^n + 3 \neq 4.$$

Using contrapositive proof, we prove

$$(2^n+3=4) \Rightarrow \exists n \in \mathbb{Z}, n=0.$$

Then, let $n \in \mathbb{Z}$

 $(2^n+3=4) \quad \Rightarrow \quad 2^n=1$ $\Rightarrow \ln 2^n = \ln 1$ $\Rightarrow n \ln 2 = 0$ $\Rightarrow n = 0.$

Finally

 $\forall n \in \mathbb{Z}, n \neq 0 \Rightarrow 2^n + 3 \neq 4.$

Exercise 4.2.2. (04r	ts)	
Let the application f h	be defined by	
Let the application j t	le defined by	
$f: \mathbb{N} \times \mathbb{R} - \{-$	$-1\} \rightarrow \mathbb{R}$	
(n, x)	$\mapsto f(n, x) = \frac{n}{n}$	
(1),)		
1. Calculate $f(\{1,$	$2 \times [0, 2]$ and $f^{-1}(\{1\})$.	
2 Study the inject	ivity and the surjectivity of f	
2. Study the hijeet.	ivity and the surjectivity of <i>j</i> .	

Solution:

• Calculate
$$f(\{1,2\} \times [0,2])$$
 et $f^{-1}(\{1\})$.
1. $f(\{1,2\} \times [0,2])$. (01)
 $f(\{1,2\} \times [0,2]) = \{f(n,x) : (n,x) \in \{1,2\} \times [0,2]\}$
 $= \{f(1,x) : x \in [0,2]\} \cup \{f(2,x) : x \in [0,2]\},$

so for $n \in \{1, 2\}$

$$x \in [0,2] \Rightarrow \frac{n}{x+1} \in \left[\frac{n}{3},n\right].$$

Then

$$f(\{1,2\} \times [0,2]) = \left[\frac{1}{3},1\right] \cup \left[\frac{2}{3},2\right] = \left[\frac{1}{3},2\right].$$

2.
$$f^{-1}(\{1\})$$
. (01)
 $f^{-1}(\{1\}) = \left\{ (n,x) : \frac{n}{x+1} = 1 \right\}$
 $= \{(n,x) : x = n-1\}$
 $= \{(n,n-1) : n \in \mathbb{N}^*\}.$

- Study the injectivity and surjectivity of *f*.
 - 1. Injectivity: we have for example f(0,0) = f(0,1), but $(0,0) \neq (0,1)$, then f is not injective. (01)
 - 2. Surjectivity: let $y \in \mathbb{R}$, then

 - (a) If y = 0, then $\exists n = 0$, and $x \in \mathbb{R} \setminus \{-1\}$ such that $0 = \frac{0}{x+1}$. (b) If $y \neq 0$, then $\exists n \in \mathbb{N}^*$ and $\exists x \in \mathbb{R}$, for example $n = |[y]| + 1 \in \mathbb{N}^*$, and $x = \frac{|[y]|+1}{y} 1 \in \mathbb{R} \setminus \{-1\}$ such that $y = \frac{n}{x+1}$. where [.] : is the integer part function. Then *f* is surjective. (01)

Ex	erc	ise	4.	2.3	•	(04	1 p1	s)																				
	1	Ιo	+ ((r.	1			m	mu	tati	vo	arc	um	n	d a	ite	nc	t <i>r</i>	-1	مام	ma	nt	Sh	οw	th	at t	ha	
	1.	LU	ι(u, ,	() I		1 00	лп	mu	iati	ve	grt	Jup	an	u e	115		uu	ai		inc.	m.	511	UW	un	ai i	ne	
		set																										
				H	_	$\{a$	$\in ($	۲. ۳: ($a\star$	a*	a =	$=a^{\dagger}$	}.															
						(**							, ,															
		is a	a si	ıbg	roi	ıp o	of (G,	*).																			
	2.	So	lve	in	\mathbb{H}	the	fo	llov	vin	g e	qu	atic	on y	c ²⁰²	24 =	= e.	W	her	e x	n =	= x 7	$\star x$	*	*x				
										C	1)	n t	ime	5				

Solution:

$$= \underbrace{\underbrace{25 \times 3 \text{ times}}_{9 \text{ times}} \times x \times x}_{9 \text{ times}} \times x = x \times x \times x \times x \times x = x \times x.$$

Then

$$x \star x = e \Rightarrow x = x^{-1},$$

hence the set of solutions is $\mathbb{S} = \{x \in \mathbb{H}: x = x^{-1}\}$. (01.5)

Ex	er	cise	4.2.4	1:	(0)	7 m	ts)																	
		Wh	at is	the	va	lue	of	a s	ucl	h tł	nat	the	pc	lvr	on	nail								
													r	-)										
			Р	a =	X^4	+	X^2	$+ \epsilon$	ı															
				ı			-																	
		doe	s no	t ac	cer	ot re	oot	s ir	\mathbb{R}	. Ir	th	is c	ase	e w	hat	: do	y y c	ou (con	clu	de	?		
	•	Fac	tor t	he r	pol	ync) ma	il I	P ₁ i	n F	$\mathbb{R}[X]$].					2							
	•	Fin	d the	$\frac{1}{2}D$	=	gcd	$(P_1$, O), v	whe	ere	0 =	= >	K ⁵ -	+X	4+	- 23	χ ³ .	$+ \lambda$	2_	+X			
		1	. De	edu/	ce t	the	fac	tor	iza	tio	n o'	f O	in	$\mathbb{R}[$	X].									
		2	. Fi	nd /	A a'	nd	B c	of tł	ne r	ore	vio	us I	D,	suc	h t	hat	AF	? ₁ +	B	0 =	= D).		
		3	. D	eco	mp	ose	the	e fr	act	ion	$\frac{Q}{P}$	int	to s	im	ple	ele	eme	ent	s ir	\mathbb{R}	[X]			
					1						P_1			-	r						- 1			

Solution:

• - The value of *a* such that the polynomial P_a does not accept the roots in \mathbb{R} . We consider the function

$$X \longmapsto P_a(X) = X^4 + X^2 + a.$$

So, we have

$$P'_{a}(X) = 4X^{3} + 2X = 2X(2X^{2} + 1),$$

then,

$$P'_a(X) = 0 \Longrightarrow X = 0,$$

since, $P_a(0) = a$, then graph of P(X) pass by the axis (Ox) if $a \le 0$. Then the polynomial P_a does not accept the roots in \mathbb{R} if $a \in [0, +\infty[$. (01) $xP'_a(x)P_a \approx 0 \approx P_a(0) \approx$

- Conclusion: The polynomial P_a does not accept the roots in \mathbb{R} , but it is of degree 4, so it is the product of polynomials of degree 2, (0.5)
- Factor the polynomial P₁ in ℝ[X] : we have a = 1 so P it is the product of polynomials of degree 2. Then (01)

$$X^{4} + X^{2} + 1 = (X^{2} + 1)^{2} - X^{2}$$

= $(X^{2} + X + 1) (X^{2} - X + 1).$

• Find the $D = \text{gcd}(P_1, Q)$, where $Q = X^5 + X^4 + 2X^3 + X^2 + X$. Using Euclidean division we find

$$\begin{array}{c|c} X^{4} + X^{2} & +1 & X^{3} - 1 \\ \hline -X^{4} & +X \\ \hline X^{2} + X + 1 & X \\ \hline X^{3} & -1 & X^{2} + X + 1 \\ \hline -X^{3} - X^{2} - X \\ \hline -X^{2} - X - 1 \\ \hline X^{2} + X + 1 \\ \hline 0 & 0 \end{array}$$

then D = gcd(P₁, Q) = X² + X + 1. (02)
1. Deduce the factorization of Q in ℝ[X]. Factorization of Q in ℝ[X], from the above, we get Q divisible byD = X² + X + 1, then

$$\begin{array}{c|c} X^{5} + X^{4} + 2X^{3} + X^{2} + X & X^{2} + X + 1 \\ \hline -X^{5} - X^{4} & -X^{3} \\ \hline & X^{3} + X^{2} + X \\ \hline & -X^{3} - X^{2} - X \\ \hline & 0 \end{array}$$

And from it we find (0.5)

$$X^{5} + X^{4} + 2X^{3} + X^{2} + X = X(X^{2} + 1)(X^{2} + X + 1).$$

2. Find *A* and *B* of the previous *D*, such that $AP_1 + BQ = D$: According to the euclidean division, we obtain

$$Q = (X+1)P_1 + (X^3 - 1)$$
, and $P_1 = X(X^3 - 1) + D$.

Then

$$D = P_1 - X(Q - (X + 1)P_1) = (-X)Q + (X^2 + X + 1)P_1$$

So (01)

$$A = (X^2 + X + 1), B = (-X).$$

3. Decompose the fraction $\frac{Q}{P_1}$ into simple elements in $\mathbb{R}[X]$.

$$\frac{Q}{P_1} = \frac{(X^3 + X)D}{(X^2 - X + 1)D} = \frac{X^3 + X}{X^2 - X + 1}$$

and

$$\begin{array}{c|c} X^{3} + X & X^{2} - X + 1 \\ \hline -X^{3} + X^{2} - X \\ \hline X^{2} \\ \hline -X^{2} + X - 1 \\ \hline X - 1 \end{array}$$

Finally (01)

$$\frac{Q}{P_1} = \frac{X^3 + X}{X^2 - X + 1} = X + 1 + \frac{X - 1}{X^2 - X + 1}.$$

4.2.2 Exam 2.

Fx	erc	ise	4	2 5		(0/	Int	c)																				
		190		-	•	(0-	pu	5)																				
	1	Ιe	tΔ	an	d E	e tu		art	6 0	fa	cet	न्मा -	ch	OW	the	٥t٠	(Δ	$\cap I$	2) I	$ \mathbf{R}^{c}$		A 1	+ R	с				
	1.	LU	ιл	an	u D		0	Jan	50	1 a	SCI	,فلل ،	511	000	un	и.	(\mathbf{n})		$) \cup$	\mathbf{D}	_	Л	DD	•				
	2	By		nti	an	ocit	ive	nr	001	fe	hou	v tl	nat	· If	: (n	2	1)	ic	no	t di	vie	ihl	e h	v 8	50	n n	ic	
	4.	Dу		mu	ap	0511	.1 V C	' PI	001	., s	1101	n u	iai	• 11	(n		- 1)	15	110	ιu	v15	101		yо	, 50	<i>)</i> n	15	
		011	an																									
		CV	ui.																									

Solution:

- 1. Show that: $(A \cap B) \cup B^c = A \cup B^c$. (02) Let $x \in (A \cap B) \cup B^c \iff x \in (A \cap B) \lor x \in B^c$ $\iff (x \in A \land x \in B) \lor (x \in B^c)$ $\iff (x \in A \lor x \in B^c) \land (x \in B \lor x \in B^c)$ $\iff (x \in A \cup B^c) \land (x \in B \cup B^c)$ $\iff (x \in A \cup B^c) \land (x \in \mathbb{E})$ $\iff x \in (A \cup B^c) \cap \mathbb{E}$ $\iff x \in A \cup B^c$.
- 2. By contrapositive proof, show that: If $(n^2 1)$ is not divisible by 8, so *n* is even. (02)

Let *n* be odd then $\exists k \in \mathbb{Z}$ such that n = 2k + 1, so

$$n^{2} = 4k^{2} + 4k + 1 \Leftrightarrow n^{2} - 1 = 4k(k+1)$$

it suffices to show that k(k+1) is even, we have two cases:

If k is even then k + 1 is odd so the product of an even number and an odd number is even.

If k is odd, then k + 1 is even so the product is even it is the same reasoning, (you should know that the product of two consecutive numbers is always even). Thus k(k+1) is even $\exists k' \in \mathbb{Z} : k(k+1) = 2k'$, hence

 $n^2 - 1 = 8k'$

So $n^2 - 1$ is divisible by 8.

Ex	erc	ise	4.	2.6		(00	5pt	s) I	Let	the	co	mp	oosi	itio	n lo	ow	*ł	be c	lefi	nec	l in	E	=]	R –	- {]	$\left\{\frac{1}{2}\right\}$	by	
		*	:	\mathbb{E} >	κŒ	_	\rightarrow	•			ŀ	£																
				(a.	b)	F	\rightarrow		1×1	b =	: a ·	+b		2al	, ·													
				(-)																							
	1.	Sh	ow	th	at ≯	is i	an	int	ern	al o	cor	npo	osit	ion	la	w.												
	2.	Sh	ow	th	at (E,	*) :	is a	co	mn	nut	ati	ve ş	gro	up.													
	3.	Sh	ow	th	at I	I =	= {	0, 2	$,\frac{2}{3}$	} is	a	sut	gro	bup	of	\mathbb{E}												
							ſ		5	,			Ū	-														

Solution:

1. Show that \star is an internal law in \mathbb{E} (01),

indeed: $\forall a, b \in \mathbb{E}, a+b-2ab \stackrel{??}{\in} \mathbb{E}$. (that's to say $\forall a, b \in \mathbb{E} : a+b-2ab \neq \frac{1}{2}$). we show by the absurd we suppose that $a+b-2ab = \frac{1}{2}$, knowing that $a \neq \frac{1}{2}$, and $b \neq \frac{1}{2}$

$$a+b-2ab = \frac{1}{2} \Rightarrow (2a-1)\left(b-\frac{1}{2}\right) = 0$$

 $\Rightarrow a = \frac{1}{2} \text{ or } b = \frac{1}{2}.$

contradiction, so $a+b-2ab = \frac{1}{2}$ is false, that is to say $a+b-2ab \neq \frac{1}{2}$, and from it $a \star b \in \mathbb{E}$, \star is an internal law.

- 2. Show that (\mathbb{E}, \star) is a commutative group.
 - (a) Commutativity (0.5): Let $a, b \in \mathbb{E}$, then $a \star b = a + b 2ab = b + a 2ba = b \star a$, so \star is a commutative.
 - (b) Associativity (01): Let $\forall a, b, c \in \mathbb{E}$, then

$$(a \star b) \star c = a \star b + c - 2 (a \star b) c$$

= $b + a - 2ab + c - 2 (b + a - 2ba) c$
= $b + a + c - 2ab - 2bc - 2ac + 4bac$

and

$$a \star (b \star c) = a \star (b + c - 2bc)$$

= $a + (b + c - 2bc) - 2a(b + c - 2bc)$
= $b + a + c - 2bc - 2ab - 2ac + 4bac$
= $(a \star b) \star c$

so \star is a associative.

(c) Identity element (01): $\exists e \in \mathbb{E}, \forall a \in \mathbb{E} : a \star e = e \star a = a, a \star e = a \Longrightarrow a + e - 2ea = a$

$$\implies e(1-2a) = 0$$

$$\implies e=0.$$

so the identity element is e = 0.

(d) Inverse element (01):
$$\forall a \in \mathbb{E}, \exists a^{-1} \in \mathbb{E}, : a \star a^{-1} = a^{-1} \star a = 0,$$

$$a \star a^{-1} = 0 \Longrightarrow a + a^{-1} - 2aa^{-1} = 0$$
$$\implies a^{-1} = \frac{a}{2a - 1}$$

so for all *a* in \mathbb{E} , there exist an inverse element $a^{-1} = \frac{a}{2a-1} \in \mathbb{E}$. Finally (\mathbb{E}, \star) is a commutative group. 3. Show that $\mathbb{H} = \{0, 2, \frac{2}{3}\}$ is a subgroup of \mathbb{E} . (a) $e = 0 \in \mathbb{H}$. (0.5) (b) (0.5) $\begin{cases} 0 \star 2 = 2 \in \mathbb{H} \\ 0 \star \frac{2}{3} = \frac{2}{3} \in \mathbb{H} \\ 2 \star \frac{2}{3} = 0 \in \mathbb{H} \end{cases}$ (c) (0.5) $\begin{cases} 0^{-1} = 0 \in \mathbb{H} \\ (\frac{2}{3})^{-1} = 2 \in \mathbb{H} \\ (2)^{-1} = \frac{2}{3} \in \mathbb{H} \end{cases}$ So $\mathbb{H} = \{0, 2, \frac{2}{3}\}$ is a subgroup of \mathbb{E} .

Exercise 4.2.7: (04pts)	afined by	
Let the application g be us		
$g: \mathbb{N} \times \mathbb{N} \rightarrow$	$\mathbb{N} \cup \{-3, -2, -1\}$	
$(n,m) \mapsto$	g(n,m) = n + m - 3.	
1. Calculate $g(\{(1,2)\})$	$(2,3)$ and $g^{-1}(\{2\})$.	
2. Study the injectivity	and the surjectivity of g.	
<u> </u>	J	

Solution:

•
$$g(\{(1,2),(2,3)\})$$
 and $g^{-1}(\{2\})$.
1. $g(\{(1,2),(2,3)\})$. (01)
 $g(\{(1,2),(2,3)\}) = \{g(n,m) : (n,m) \in \{(1,2),(2,3)\}\}$
 $= \{g(1,2),g(2,3)\}$
 $= \{0,2\}$
2. $g^{-1}(\{2\})$. (01)
 $g^{-1}(\{2\}) = \{(n,m) : n+m-3=2\}$
 $= \{(n,m) : m+n=5, n,m \in \mathbb{N}\}$
 $= \{(0,5), (1,4), (2,3), (3,2), (4,1), (5,0)\}$

- Study the injectivity and surjectivity of *g*.
 - 1. Injectivity: we have for example g(0,5) = g(1,4), but $(0,5) \neq (1,4)$, then g is not injective. (01)
 - 2. Surjectivity: we have $\forall s \in \mathbb{N} \cup \{-3, -2, -1\}$, $\exists (n,m) \in \mathbb{N} : n+m-3 = s.$ (For example n = 0, m = s+3) Then g is surjective. (01)

Exercise 4.2.8: (06pts) Let *P* and *Q* be two polynomials such that: $P(X) = X^4 + 2X^3 - X - 2$, and $Q(X) = X^5 + 2X^4 - X^3 - 2X^2 + X + 2$. 1. Find the D = gcd(P,Q). 2. Find the polynomials *A* and *B* such that D = AP + BQ. 3. Factor the polynomials *P* and *Q* into a product of irreducible factors in $\mathbb{R}[X]$.

Solution:

- 1. Find the D = gcd(P, Q).
 - (a) 1^{st} : We divide Q by P, we obtain

$$R_1(X) = -X^3 - X^2 + 3X + 2$$
, and $Q_1(X) = X$.

(b) 2^{nd} : We divide *P* by R_1 , we obtain

$$R_2(X) = 2X^2 + 4X$$
, and $Q_2(X) = -(X+1)$.

(c) 3^{rd} : We divide R_1 by R_2 , we obtain

$$R_3(X) = X + 2$$
, and $Q_3(X) = -\frac{1}{2}(X - 1)$.

(d) 4^{th} : We divide R_2 by R_3 , we obtain

$$R_4(X) = 0$$
, and $Q_4(X) = 2X$.

So $D = gcd(P,Q) = R_3(X) = X + 2.$ (02)

2. Find the polynomials A and B such that D = AP + BQ. we have

$$\begin{cases} Q = Q_1 P + R_1 \\ P = R_1 Q_2 + R_2 \\ R_1 = R_2 Q_3 + D \end{cases} \implies \begin{cases} R_1 = Q - Q_1 P \\ R_2 = P - R_1 Q_2 \\ D = R_1 - R_2 Q_3 \\ \Longrightarrow D = (1 + Q_2 Q_3) Q + (-Q_1 - Q_3 - Q_1 Q_2 Q_3) P \end{cases}$$

so

$$A = -Q_1 - Q_3 - Q_1 Q_2 Q_3 = -\frac{1}{2} (X^3 + 1) .(0.5)$$

$$B = 1 + Q_2 Q_3 = \frac{1}{2} (X^2 + 1) .(0.5)$$

3. Factor the polynomials P and Q into a product of irreducible factors in R[X].
(a) (01.5)

$$Q(X) = X^{5} + 2X^{4} - X^{3} - 2X^{2} + X + 2$$

= $(X + 2) (X^{4} - X^{2} + 1)$
= $(X + 2) (X^{4} + 2X^{2} + 1 - 3X^{2})$
= $(X + 2) ((X^{2} + 1)^{2} - (\sqrt{3}X)^{2})$
= $(X + 2) (X^{2} + \sqrt{3}X + 1) (X^{2} - \sqrt{3}X + 1)$

(b) (01.5)

$$P(X) = X^{4} + 2X^{3} - X - 2$$

$$= (X+2) (X^{3} - 1)$$

$$= (X+2) (X-1) (X^{2} + X + 1)$$

4.2.3 Exam 3.

	Exe	erc	ise	4.	2.9	:	(08	8pt	s) l	Let	the	e co	omj	pos	itic	on l	ow	\otimes	be	de	fine	ed i	n (G =	= R	— .	$\left\{\frac{-}{3}\right\}$	<u>l</u> }	
t	зу																												
			R	•	G	× (Ģ		>				G																
			0	· •	(.	r v			Ś	rG	۵ . , -	- 1	- - -	v _	3r	., ·													
					(.	, y)		<i>′</i>	ΛV	уу -	_ ^	<u> </u>	y i	Эл	y													
		1.	Sh	ow	th	at (⊗ is	s ar	n in	ter	nal	co	mp	osi	tio	n la	aw.												
		2.	Sh	ow	th	at (G,	\otimes)	is	a c	om	mι	itat	ive	gr	our) .												
	/	3.	Sh	ow	th	at I	HI =	= {(0, 1	, _	$\frac{1}{}$	is a	a si	ıbg	rou	ip (of (r Þ.											
								l	,	/ 4	,			2	,	1													

Solution:

1. Show that \otimes is an internal law in \mathbb{G} (01.5),

indeed: $\forall a, b \in \mathbb{E}, a+b+3ab \stackrel{??}{\in} \mathbb{G}$. (that's to say $\forall a, b \in \mathbb{G} : a+b+3ab \neq \frac{-1}{3}$). we show by the absurd we suppose that $a+b+3ab = \frac{-1}{3}$, knowing that $a \neq \frac{-1}{3}$, and $b \neq \frac{-1}{3}$

$$a+b+3ab = \frac{-1}{3} \Rightarrow (3a+1)\left(b+\frac{1}{3}\right) = 0$$
$$\Rightarrow a = \frac{-1}{3} \text{ or } b = \frac{-1}{3}.$$

contradiction, so $a + b + 3ab = \frac{-1}{3}$ is false, that is to say $a + b + 3ab \neq \frac{-1}{3}$, and from it $a \otimes b \in \mathbb{G}$, \otimes is an internal law.

- 2. Show that (\mathbb{G}, \otimes) is a commutative group.
 - (a) Commutativity (01): Let $a, b \in \mathbb{G}$, then $a \otimes b = a + b + 3ab = b + a + 3ba = b \otimes a$, so \otimes is a commutative.
 - (b) Associativity (02): Let $\forall a, b, c \in \mathbb{G}$, then

$$(a \otimes b) \otimes c = a \otimes b + c + 3 (a \otimes b) c$$

$$= b + a + 3ab + c + 3(b + a + 3ba)c$$

= b+a+c+3ab+3bc+3ac+9bac

and

$$a \otimes (b \otimes c) = a \otimes (b + c + 3bc)$$

= $a + (b + c + 3bc) + 3a (b + c + 3bc)$
= $b + a + c + 3bc + 3ab + 3ac + 9bac$
= $(a \otimes b) \otimes c$

so \otimes is a associative.

(c) Identity element (01):
$$\stackrel{?}{\exists} e \in \mathbb{G}, \forall a \in \mathbb{G} : a \otimes e = e \otimes a = a,$$

 $a \otimes e = a \Longrightarrow a + e + 3ea = a$
 $\Rightarrow e(1+3a) = 0$
 $\Rightarrow e = 0.$
so the identity element is $e = 0.$
(d) Inverse element (01): $\forall a \in \mathbb{G}, \stackrel{?}{\exists} a^{-1} \in \mathbb{E}, : a \otimes a^{-1} = a^{-1} \otimes a = 0,$
 $a \otimes a^{-1} = 0 \Longrightarrow a + a^{-1} + 3aa^{-1} = 0$
 $\Rightarrow a^{-1} = \frac{-a}{3a+1}$
so for all *a* in \mathbb{G} , there exist an inverse element $a^{-1} = \frac{-a}{3a+1} \in \mathbb{G}.$
Finally (\mathbb{G}, \otimes) is a commutative group.
3. Show that $\mathbb{H} = \{0, 1, \frac{-1}{4}\}$ is a subgroup of $\mathbb{G}.$
(a) $e = 0 \in \mathbb{H}.$ (0.5)
(b) (0.5)
 $\begin{cases} 0 \otimes 1 = 1 \in \mathbb{H} \\ 0 \otimes (\frac{-1}{4}) = -\frac{1}{4} \in \mathbb{H} \\ 1 \otimes (\frac{-1}{4}) = 0 \in \mathbb{H} \end{cases}$
(c) (0.5)
 $\begin{cases} 0^{-1} = 0 \in \mathbb{H} \\ (1)^{-1} = -\frac{1}{4} \in \mathbb{H} \\ (\frac{-1}{4})^{-1} = 1 \in \mathbb{H} \end{cases}$
So $\mathbb{H} = \{0, 1, -\frac{1}{4}\}$ is a subgroup of $\mathbb{G}.$
Exercise 4.2.10: (06pts)
Let the application *h* be defined by
 $h: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \Rightarrow \mathbb{N} \cup \{-1\}$
(n, m, p) $\mapsto h(n, m, p) = n + m + p - 1.$
1. Calculate $h(\{0, 1, 2\}, (2, 0, 3\})$ and $h^{-1}(\{1\})$).
2. Study the injectivity and the surjectivity of *h*.

Solution:

•
$$h(\{(0,1,2),(2,0,3)\})$$
 and $h^{-1}(\{1\})$.
1. $h(\{(0,1,2),(2,0,3)\})$. (01)
 $h(\{(0,1,2),(2,0,3)\}) = \{h(n,m,p) : (n,m,p) \in \{(0,1,2),(2,0,3)\}\}$
 $= \{h(0,1,2),h(2,0,3)\}$
 $= \{2,4\}$
2.
$$h^{-1}(\{1\})$$
. (01)
 $h^{-1}(\{1\}) = \{(n,m,p) : n+m+p-1=1\}$
 $= \{(n,m,p) : m+n+p=2, n,m \in \mathbb{N}\}$
 $= \{(0,0,2), (0,2,0), (2,0,0), (1,1,0), (1,0,1), (0,1,1)\}$

- Study the injectivity and surjectivity of *h*.
 - 1. Injectivity: we have for example h(0,0,2) = h(2,0,0), but $(0,0,2) \neq (2,0,0)$, then *h* is not injective. (01)
 - 2. Surjectivity: we have $\forall s \in \mathbb{N} \cup \{-1\}, \exists (n, m, p) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : n + m + p 1 = s$.(For example n = 0, m = s + 1, p = 0) Then *h* is surjective. (01)

Solution:

- 1. Find the D = gcd(A, B).
 - (a) 1^{st} : We divide *B* by *A*, we obtain

$$R_1(X) = X^3 + 3X^2 + X - 2$$
, and $Q_1(X) = X^2 - 1$.

(b) 2^{nd} : We divide *P* by R_1 , we obtain

$$R_2(X) = 2X^2 + 2X - 4$$
, and $Q_2(X) = X - 1$.

(c) 3^{rd} : We divide R_1 by R_2 , we obtain

$$R_3(X) = X + 2$$
, and $Q_3(X) = \frac{1}{2}X + 1$.

(d) 4^{th} : We divide R_2 by R_3 , we obtain

$$R_4(X) = 0$$
, and $Q_4(X) = 2X$.

So $D = gcd(A, B) = R_3(X) = X + 2.$ (03)

2. Factor the polynomials A and B into a product of irreducible factors in R[X].
(a) (01.5)

$$B(X) = X^{6} + 2X^{5} - X^{4} - 2X^{3} + X^{2} + 2X$$

= $X(X+2)(X^{4} - X^{2} + 1)$
= $X(X+2)(X^{4} + 2X^{2} + 1 - 3X^{2})$
= $X(X+2)((X^{2} + 1)^{2} - (\sqrt{3}X)^{2})$
= $X(X+2)(X^{2} + \sqrt{3}X + 1)(X^{2} - \sqrt{3}X + 1).$

(b) (01.5)

$$A(X) = X^{4} + 2X^{3} - X - 2$$

$$= (X+2) (X^{3}-1)$$

$$= (X+2) (X-1) (X^{2}+X+1).$$

4.2.4 Exam 4.

 Exercise 4.2.12:
 (06pts)

 1. Let p and r be two propositions mathematics, show that the following equivalence:

 ($p \Rightarrow r$) $\Leftrightarrow (p \Rightarrow p \land r)$.

 2. Choose the proof method, and prove the following statement:

 $\forall n, m \in \mathbb{Z}, n \neq m \Rightarrow 2^n + 2^m \neq 32.$

 Exercise 4.2.13:
 (06pts)

 Let the application f be defined by
 $f: \mathbb{R} \rightarrow \mathbb{Z} \times \mathbb{R}$
 $x \mapsto f(x) = ([x], x)$.
 where [.]: is the integer part function.

 1. Calculate $f(\{\frac{11}{5}, \frac{-11}{3}\})$ and $f^{-1}(\{\{0,3\}\})$.

 2. Study the injectivity and the surjectivity of f.

 Exercise 4.2.14:
 (08pts)

 1. Let P and Q be two polynomails
 $P = X^4 - X^2 + 1$,

$$Q = X^5 + \sqrt{3}X^4 + 2X^3 + \sqrt{3}X^2 + X$$

2. Factor the polynomail *P* in $\mathbb{R}[X]$.

3. Find the D = gcd(P, Q), where

- (a) Deduce the factorization of Q in $\mathbb{R}[X]$.
 - (b) Decompose the fraction $\frac{Q}{P}$ into simple elements in $\mathbb{R}[X]$.

- [1] **Stéphane BALAC, Frédéric STURM**. Algèbre et Analyse Cours de mathématiques de première année avec exercices corrigés. 2^e édition revue et augmentée (2009)
- [2] J.M.Arnaudiès, H.Fraysse. Cours de mathématiques-1 Algèbre Classes préparatoires 1^{er}cycle universitaire (Dunod université 1992)
- [3] **J.QUINET** Cours élémentaire de mathématiques supérieues-1 Algèbre 6^e édition Dunod (1976)
- [4] Marie ALLANO6CHEVALIER. MATHS MPSI 1^{RE}ANNÉE Cours et exercices avec solutions.
- [5] **Daniel FREDON et Myriam MAUMY-BERTRAND**. Mathématiques Algèbre et géométrie en 30 fiches. Dunod, Paris, 2009
- [6] **A. Bodin, B. Boutin, P. Romon**. Algèbre : Cours de Mathématiques première année Ex07.